VEHICLE-PAVEMENT INTERACTION

• Workshop on Super-Single Tires

• Mixture Design to Enhance Safety and Reduce Noise of HMA

• Pavement Response Model to Dynamic Loads
WORKSHOP

• Review of progress on the use and impact of super single tires on pavements

• Plan future activities in this area

• October 24-25, 2007

• Turner Fairbank Highway Research Center

• 12-15 U.S. and International participants
PAVEMENT MODEL

• Develop a fundamental model to predict the response of flexible pavements to traffic loads moving at a certain speed.

• To be used as an advanced analysis model for
 – Intersections
 – Heavy loads
 – Off-road equipments
PAVEMENT MODEL

I. Dynamic Load
 - Truck suspension
 - Road roughness
 - Braking/Acceleration
 - Speed

II. Tire-Pavement Interface
 - Inflation pressure
 - Tire type
 - Tire load
 - Speed

III. Pavement Response
 - Inertia
 - Material characteristics
PAVEMENT MODEL
III. Pavement Response

Material Characterization

• HMA Layer: viscoelastic properties
 – Dynamic modulus master curve
 – Inertia
 – Internal damping (phase angle)

Unbound material: linear elastic properties
 – Modulus
 – Inertia
 – Internal damping
III. Pavement Response

Material Characterization

• HMA Layer: Variation of Dynamic Complex modulus with loading frequency

\[E^* = E' + i E'' \]

where \(E' = \) Storage Modulus
\(E'' = \) Loss Modulus

For every loading frequency select \(E' \) and \(E'' \)
COMPARISON OF MODELS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Current Practice</th>
<th>Proposed Practice</th>
<th>Future Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>L-E</td>
<td>L-V-E</td>
<td>N-L-V-E</td>
</tr>
<tr>
<td>Base/SG</td>
<td>L-E</td>
<td>L-E</td>
<td>N-L-E</td>
</tr>
<tr>
<td>Loads</td>
<td>Static</td>
<td>Moving</td>
<td>Static</td>
</tr>
<tr>
<td>Pressure</td>
<td>Uniform</td>
<td>Any Dist.</td>
<td>Any Dist.?</td>
</tr>
<tr>
<td>Application</td>
<td>Simple</td>
<td>Moderate</td>
<td>Complicated</td>
</tr>
</tbody>
</table>
PAVEMENT MODEL

- Is it a Comprehensive Model: No
- Public Domain
- Time Efficient
- Short Term Delivery: 2-3 years
PAVEMENT MODEL

• Applicable to a Wide Range of Cases

• Improvements:
 - dynamic loads
 - dynamic behavior of pavement
 - non-uniform stress distributions
 - two-dimensional stress distributions
 - incorporates pavement roughness