

### Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

Elie Y. Hajj, Assistant Professor, UNR M. Zia Alavi, Ph.D., Postdoctoral Scholar, UC Davis Nathan Morian, Ph.D., Nevada DOT S. Farzan Kazemi, Grad. Research Assistant, UNR Peter E. Sebaaly, Professor, UNR

*FHWA Asphalt Mixture Expert Task Group Baton Rouge, Louisiana – September 17-19, 2014* 





<u>www.wrsc.unr.edu</u> ; <u>www.arc.unr.edu</u>



Comprehensive Evaluation of Thermal Cracking in Asphalt Pavements

### THERMAL CRACKING ANALYSIS PACKAGE (TCAP)





www.wrsc.unr.edu; www.arc.unr.edu

## Thermal Cracking Analysis Influential Factors

- Pavement Structure
  - Asphalt layer thickness.
  - Interface condition.
- Environmental Conditions
  - Pavement temperatures.
  - Cooling/warming rates.
- Asphalt mixture properties
  - Viscoelastic properties
  - Thermal Volumetric properties
  - Fracture and Crack Initiation Properties
- Asphalt mixture aging
  - Property change with oxidative aging













# Thermal Cracking Analysis **Existing Models**

• Aging of asphalt binder over time is not considered

*"viscoelastic, fracture, and volumetric properties of asphalt material constant over time."* 

- Thermal coefficient of contraction (CTC) is considered constant with temperature and usually estimated.
- **Tensile strength** is considered **constant** with temperature and time.
- Pavement temperature model (currently EICM) can be improved.





# Thermal Cracking Analysis **Supportive Experimental Plan** (Morian, N. 2014)

#### Asphalt Binder Testing

• 15 asphalt binder types Unmodified, polymer modified, lime modified

- Testing
  - □ Carbonyl Area (FT-IR)
    - Binder Master Curves and LSV

1 mm film asphalt binder pan aging over different times and durations
(50, 60, 85 and 100°C up to 320 days) Asphalt Mixture Testing (partial factorial)

- 5 Agg. Sources (Abs. from 0.9 to 5.97%)
- 3 Gradations (coarse, interm. & fine)
- 2 Binders (PG64-22, PG64-28 SBS mod.)
- Binder Contents (3.62 to 9.14% TWM)
- 3 Air Void levels (4, 7, 11%)
- Testing
  - Dynamic modulus (E\*)
  - Uniaxial Thermal Stress & Strain Test (UTSST)

#### Asphalt Mixture aging: 4 Levels (0, 3, 6, and 9 months at 60°C)

# Thermal Cracking Analysis Proposed Model



**Predicted pavement temperature (Step 1)** (over time and at depth z)

Predicted carbonyl (CA) (Step 2) (over time and at depth z)

#### Asphalt mixture Relaxation modulus

- Directly from the E\* complex modulus
- based on continuous relaxation spectrum
- Age dependent

#### **Coefficient of thermal contraction (CTC)**

- Temperature dependent CTC
- Obtained from the thermal strain curve
- Age dependent

### **1-D Linear viscoelastic model**





## Thermal Cracking Analysis Prediction of Field Aging (Numerical solution using FCVM)

Pavement location: Reno, NV Aggregate: Northern Nevada Binder type: PG64-28 (SBS mod.) Binder content: 5.22% Air voids: 7%

 $E_a$ = 72.53 kJol/mol  $AP^{\alpha}$  = 4.08 E+8 ln(CA/day) HS = 2.7 (1/CA) m = 9.24 (poise) Air void diameter = 0.5 mm Eff. aging zone = 1.0 mm (film thickness)





### Thermal Cracking Analysis Lab Simulation of Field Aging



## Thermal Cracking Analysis Thermal Stress Calculation

• 1D linear viscoelastic constitutive equation with oxidative aging effect.







## Thermal Cracking Analysis Age-Dependent Relaxation Modulus

- Relaxation modulus determined from dynamic complex modulus.
  - Continuous relaxation spectrum directly obtained by inverse Laplace
     Fourier Transform of complex E\* (2S2P1D, *Olard & Di Benedetto, 2003)*.

$$E_r(t) = E_0 + \int_{-\infty}^{+\infty} H(\rho) \cdot e^{\left(\frac{-t}{\rho}\right)} d\ln(\rho)$$

$$H(\rho) = \pm \pi^{-1} Im E^*(\rho^{-1}.e^{(\pm i\pi)})$$

$$E^*(i\omega) = E_0 + \frac{E_\infty - E_0}{1 + \delta(i\omega\tau)^{-k} + (i\omega\tau)^{-h} + (i\omega\beta\tau)^{-1}}$$



- $\omega$ :  $2\pi^*$ frequency, the pulsation
- $E_0$ : static modulus when  $\omega \rightarrow 0$
- ►  $E_{\infty}$ : limit of complex modulus when  $\omega \to \infty$ ,
- ▶ h, k : exponents such as 1>h>k>0,
- δ : dimensionless constant.
- ▶ β: dimensionless constant,  $\beta = \eta$ .  $\tau^{-1}/(E_{\infty}-E_0)$ ; when  $\omega \rightarrow 0$ , then E\*( iω τ) ~ E<sub>0</sub>+ iω η.
- τ : characteristic time, which varies only with temperature



IN

## Thermal Cracking Analysis Evolution of 2S2P1D Coefficient with Aging



Consistent trends were found for the evaluated mixtures!  $(2S2P1D \ coeff)_j = A_j \times e^{B_j(CA-CA_0)}$ 





<u>I</u>

# Thermal Cracking Analysis Evolution of 2S2P1D Coefficient with Aging

|                  |              |                    |              | Mixtur                         | e variable   |              |               |
|------------------|--------------|--------------------|--------------|--------------------------------|--------------|--------------|---------------|
| 2S2P1D<br>coeff. | CA           | V <sub>a</sub> (%) | Abs. (%)     | LSV <sub>Tank</sub><br>(poise) | B.C. (%)     | Retained # 8 | Passing # 200 |
| E <sub>0</sub>   | $\checkmark$ | $\checkmark$       | $\checkmark$ | $\checkmark$                   | $\checkmark$ |              |               |
| E∞               | $\checkmark$ | $\checkmark$       | $\checkmark$ | $\checkmark$                   | $\checkmark$ | $\checkmark$ | $\checkmark$  |
| δ                | $\checkmark$ | $\checkmark$       | $\checkmark$ | $\checkmark$                   | $\checkmark$ |              | $\checkmark$  |
| k                | $\checkmark$ |                    | $\checkmark$ | $\checkmark$                   |              |              | $\checkmark$  |
| h                | $\checkmark$ |                    |              | $\checkmark$                   | $\checkmark$ |              |               |
| T <sub>0</sub>   | $\checkmark$ |                    | $\checkmark$ |                                |              |              | $\checkmark$  |





### **Thermal Cracking Analysis Evolution of 2S2P1D Coefficient with Aging**







### Thermal Cracking Analysis Temperature and Age-Dependent CTC





M







- Validation of CIS with VECD.
  - Elastic-Viscoelastic Correspondence Principle

$$\sigma_{Th}(t) = E_R \times I \times \varepsilon_{Th}^R(t) \qquad \varepsilon_{Th}^R(t) = \frac{1}{E_R} \int_0^t -E_r(\xi(t) - \xi(t')) \frac{\partial \varepsilon_{Th}(t')}{\partial t'} dt'$$



• Validation of CIS with VECD.



Various mixtures with different binder grades, aggregates, and mix designs.







Similar trends were observed for all evaluated mixtures!

$$CIS = E \times e^{F(CA - CA_0)}$$





|     |              |              | Μ            | lixture v                      | variable     | 9               |                  |
|-----|--------------|--------------|--------------|--------------------------------|--------------|-----------------|------------------|
|     | CA           | Va (%)       | Abs.<br>(%)  | LSV <sub>Tank</sub><br>(poise) | B.C.<br>(%)  | Retained<br># 8 | Passing #<br>200 |
| CIS | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$                   |              |                 | $\checkmark$     |
| CIT | $\checkmark$ | $\checkmark$ |              | $\checkmark$                   | $\checkmark$ | $\checkmark$    | $\checkmark$     |







# Thermal Cracking Analysis Thermal Cracking Event Probability

 The accumulative events during which thermal stress reaches a defined percentage of the asphalt mixture <u>Crack Initiation</u> <u>Stress (CIS)</u> over the analysis period!







### MATLAB Graphical User Interface (GUI) Thermal Cracking Analysis Package (TCAP)

|                                                                                                                                                           | Thermal Cracking Analysis Package Ver Alfa 1.0                                                             | About TCAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis Steps<br>Analysis Steps<br>Analysis Steps<br>Areament Semperature<br>Oxidative Aging (Carbo<br>Asphalt Materials Prope<br>Thermal Cracking Anal) | Pavement<br>Structure<br>Environmental<br>Condition<br>Oxidative<br>Aging<br>Asphalt Mixture<br>Properties | Control       Analysis       Thermal Cracking Analysis       Cuttor         Ceneral Information       Import CA predictions       Cuttor       Aging interval       Import CA predictions       Run Analysis         Control Cracking Analysis       Import CA predictions       Cuttor       Run Analysis       Import CA predictions       Cuttor         Control Cracking Analysis       Import CA predictions       Cuttor       Run Analysis       Import CA predictions       Cuttor         Control Cracking Analysis       Import CA predictions       Cuttor       Run Analysis       Import CA predictions       Import CA predicting predictions       Import CA predict |
|                                                                                                                                                           | - General Information                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                           | Project Name NV28-4%-Reno                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                           | Analysis Period 20                                                                                         | 0 2 4 6 8 10 12 14 16 18<br>time (hours) x 10 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                           | Construction Date month August   Days 1  year 2000                                                         | 300<br>= 250 CIS event 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                           | Project Discription                                                                                        | 80%-CIS event 800<br>8 200 - 770%-CIS event 2 2 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                           |                                                                                                            | 8         150         50%CIS event         9         40           100         40%CIS event         9         40           50         20         cracking index         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                           | Example of calvulation                                                                                     | <pre>     0 0 0.5 1 1.5 2 0 0.5 1 1.5 2     time (hours) x 10<sup>6</sup>     time (hours) x 10<sup>6</sup> </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                           | Refresh Accep                                                                                              | rt l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                           |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



### **Examples: TCAP Analysis**

- Pavement Location
  - -Reno, Nevada
- Asphalt Mixtures:
  - Polymer-modified PG64-28; 3 air void levels:
    - NV\_5.22PG64-28\_4%; NV\_5.22PG64-28\_7%; NV\_5.22PG64-28\_11%
- Design Period
  - -20 years





### Examples: TCAP analysis Effect of Oxidative Aging on Thermal Stresses

Difference in predicted thermal stresses between aging and no-aging effect analyses.





### Examples: TCAP analysis Thermal Stress vs. Crack Initiation Stress (CIS)



### Examples: TCAP analysis Effect of Mixtures Air Voids







#### Examples: TCAP analysis Effect of Modification (Two field projects from Reno, NV)







### **TCAP** Implementation





### **Future Research and Improvements**

- Field validation of TCAP model.
- Sensitivity analysis of TCAP model.
- Level 3 material input:
  - Regression models for materials oxidative aging, viscoelastic, and crack initiation properties.
- Development of a stand-alone TCAP software.







**Pavement Temperature Profile History** 

### **TEMPERATURE ESTIMATE MODEL FOR PAVEMENT STRUCTURES (TEMPS)**





www.wrsc.unr.edu; www.arc.unr.edu

### Pavement Temperature Profile Prediction

### Improvement of the Heat Transfer model [Han et al., 2011 (TAMU)]

- Enhanced boundary conditions.
- Variable pavement surface radiation properties.

### Opplication of Finite Control Volume method (FCV) with Implicit Scheme [Alavi et al., 2014 (UNR)]

- Considering discontinuity in pavement layers' material.
- Improving the time efficiency of calculation.





### Pavement Temperature Profile Prediction Heat Transfer Model Concept



Heat Transfer Balance Between Pavement Structure & Surrounding Environment

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left( \alpha \times \frac{\partial T}{\partial z} \right), \qquad \alpha = \frac{k}{\rho.c}$$





#### Pavement Temperature Profile Prediction Numerical Computation: Finite Control Volume Method (FCVM)





# Pavement Temperature Profile Prediction Standalone Software: TEMPS (Alpha Version)

### <u>Temperature</u> <u>Estimate</u> <u>Model</u> for <u>Pavement</u> <u>Structures</u> (TEMPS)



### **INPUT MODULES:**

- <u>Materials</u>
- <u>Climatic Data</u>
- Surface Characteristics
- Pavement Structure
- Mesh Generator





### Pavement Temperature Profile Prediction **TEMPS – Materials Input**

| 0 |                         |                                                                                                                                                                                                                                | Example   | e-Monta | na - TEMPS                     |                  |                                  |                       | _ 🗇 🛛            |
|---|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------------------------------|------------------|----------------------------------|-----------------------|------------------|
|   | File Run Help           |                                                                                                                                                                                                                                |           |         |                                |                  |                                  |                       |                  |
|   |                         | )                                                                                                                                                                                                                              |           |         |                                |                  |                                  |                       |                  |
|   | Input                   | Material                                                                                                                                                                                                                       |           |         |                                |                  |                                  |                       |                  |
|   | Materials               | Material Type:                                                                                                                                                                                                                 | Material1 | 1       | Add                            | 3                | Delete Inse                      | rt 🚹                  |                  |
|   | - AR                    | Identifier Color:                                                                                                                                                                                                              | Brown 🗸   | 1       | Material Type                  | Identifier Color | Specific Heat Capacity (J/kg°K): | Conductivity (W/m°K): | Density (kg/m³): |
|   | Climatic Data           | Specific Heat Capacity (J/kg°K):                                                                                                                                                                                               | 1900 🖨    | 1       | Asphalt Mixture<br>Coarse Agg. | Black<br>Silver  | 921<br>1900                      | 1.21<br>1.00          | 2250<br>1800     |
|   | Surface Characteristics | Conductivity (W/m°K):                                                                                                                                                                                                          | 1.00 🜩    | i       | Fine Agg.                      | Brown            | 1900                             | 1.00                  | 1500             |
|   | Pavement Structure      | Density (kg/m³):                                                                                                                                                                                                               | 1500 🜩    | 1       |                                |                  |                                  |                       |                  |
|   | Mesh Generator          | Material         Material         Material         Identifier Color:         Brown         Specific Heat Capacity (J/kg'K):         Conductivity (W/m'K):         Density (kg/m)?         Density (kg/m)?         Description: |           |         |                                |                  |                                  |                       |                  |
|   |                         |                                                                                                                                                                                                                                |           |         |                                |                  |                                  |                       |                  |
|   |                         |                                                                                                                                                                                                                                |           |         |                                |                  |                                  |                       |                  |
|   |                         |                                                                                                                                                                                                                                |           |         |                                |                  |                                  |                       |                  |
|   |                         |                                                                                                                                                                                                                                |           |         | ٢                              |                  |                                  |                       | >                |



# Pavement Temperature Profile Prediction **TEMPS – Climatic Data Input**

| ●                       |                              |                                |                            | Example-Montan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ia - TEMPS                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | _ 🗇 >                                                                                                                                                                             |
|-------------------------|------------------------------|--------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Run Help           |                              |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                                                                                                                                                                   |
| E 🕸 🕺 🧿                 | )                            |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                                                                                                                                                                   |
| Input<br>Materials      | Climatic Data                |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                                                                                                                                                                                   |
| Climatic Data           | Year<br>2001<br>2001         | Day<br>1                       | Month Hour<br>12 0<br>12 1 | Air Temperature(°C)<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wind Speed(m/s)<br>19                            | Solar Radiation ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c                                              | limatic Data Sources                                                                                                                                                              |
| Surface Characteristics | 2001<br>2001<br>2001<br>2001 | 1<br>1<br>1                    | 12 12 2<br>12 3<br>12 4    | -1<br>0<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15<br>22<br>19                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | . National Climate Data Center<br>NCDC)<br>he following website provides free hourly                                                                                              |
| Pavement Structure      | 2001<br>2001                 | 1                              | 12 5<br>12 6               | -1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18<br>21                                         | 0 ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | te<br>ht                                       | mperature data:<br>tp://gis.ncdc.noaa.gov/                                                                                                                                        |
| Mesh Generator          | Plot                         | A                              | ir Temperature             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Air Temperature                                  | Speed(m/s) Solar Radiation<br>19 0<br>16 0<br>15 0<br>22 0<br>19 0<br>18 0<br>21 0<br>Temperature<br>Temperature<br>Temperature<br>Temperature<br>Temperature<br>Temperature<br>Temperature<br>Temperature<br>Temperature<br>Temperature<br>The following website provides free h<br>temperature data:<br>http://dis.ncdc.noaa.gov/<br>2. National Solar Radiation Dat<br>Base (NSRDB)<br>The following website provides you w<br>The | . National Solar Radiation Data<br>ase (NSRDB) |                                                                                                                                                                                   |
|                         | Туре                         | L                              | ine                        | <ul> <li>✓</li> <li>✓</li></ul> |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y<br>b<br>d                                    | ne following website provides you with a<br>ood source for hourly air temperature,<br>ourly solar radiation and hourly wind speed<br>ata which are available mostly for airports: |
|                         | X-Axis                       |                                |                            | 20<br>-=<br>-=<br>-=<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b                                              | tp://medc.nrel.gov/solar/old_data/nsrdb/                                                                                                                                          |
|                         | Start Date S                 | aturday , Dece<br>aturday Nove | ember 1,2001               | • 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-00:00<br>5-00:00<br>5-00:00                    | 00:00-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>P                                         | Long Term Pavement<br>erformance (LTPP)                                                                                                                                           |
|                         | Y Avia                       |                                |                            | 001/01/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 002/01/05<br>002/01/05<br>002/01/05<br>002/01/06 | 002/01/05<br>002/01/05<br>002/01/16<br>002/01/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T<br>w<br>in                                   | he tollowing website provides LTTP data,<br>hich are monitored on pavement sections<br>the United States over years:                                                              |
| VESTERN REGIONAL        | Minimum                      |                                |                            | ~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ∾ ∾ ∾ ⊼ ≷<br>Date                                | ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ht                                             | tp://www.infopave.com/                                                                                                                                                            |



## Pavement Temperature Profile Prediction **TEMPS – Surface Characteristics Input**

| •                       |                                                                          | Exam | ple-Monta  | na - TEM          | IPS                         |                                          |                 |                                    |                        |             |        | _ 0 ×     |
|-------------------------|--------------------------------------------------------------------------|------|------------|-------------------|-----------------------------|------------------------------------------|-----------------|------------------------------------|------------------------|-------------|--------|-----------|
| File Run Help           |                                                                          |      |            |                   |                             |                                          |                 |                                    |                        |             |        |           |
|                         |                                                                          |      |            |                   |                             |                                          |                 |                                    |                        |             |        |           |
| Input<br>Materials      | Surface Characterisitcs     O C. J. Glover's Suggested Values (May 2010) |      | 57 79      |                   |                             |                                          |                 |                                    |                        | 48          |        |           |
| Climatic Data           | LTPP Section: 30-8129 V State Montana                                    | 8    | 32-30      | 16 <sub>0</sub> 1 | 30-8129<br>1010•<br>56-1007 | 16-9187 27                               | 1028<br>27-1018 | È.                                 | 2<br>50-1002<br>36-401 | 3 1026<br>8 |        |           |
| Surface Characteristics | Parameter: Albedo V                                                      | 0    |            | 49                | 3011                        | 31 <sub>6</sub> 3018<br>• 2              | 0-4054          | 39- <b>0</b> 90 <sup>2</sup><br>51 | 1-0113                 | 0           |        |           |
| Pavement Structure      | Summer Value: 0.2                                                        | 8    | No.        | 04,021            | 5 35-111                    | 40,410                                   | 1068            | 12 10                              | 37-102                 | 8           |        |           |
| Mesh Generator          | Winter Value: 0.35                                                       |      |            |                   |                             | 4<br>48- <b>1122</b><br>48- <b>3</b> 739 | 28-18<br>8-4142 | 302 • 13-10<br>01-0101             |                        |             |        |           |
|                         | O User-defined Values                                                    | _    |            |                   |                             |                                          |                 |                                    |                        |             |        |           |
|                         | Input Data Type: Monthly Values V                                        | 8    |            | January           | February                    | March                                    | April           | May                                | June                   | July        | August | September |
|                         | Month: January V                                                         | 0    | Albedo     | 0                 | 0                           | 0                                        | 0               | 0                                  | 0                      | 0           | 0      | 0         |
| LRL WISTEIN REGIONAL    | Albedo: 0.00                                                             | 8    | Emissivity | 0                 | 0                           | 0                                        | 0               | 0                                  | 0                      | 0           | 0      | 0         |
| SUPERPAVE CENTER        |                                                                          | _    | AL         | •                 | •                           | •                                        | •               | n                                  | •                      | •           | n      | •         |





### Pavement Temperature Profile Prediction **TEMPS – Pavement Structure**

| File Run Help     Implifying        Implifying <th></th> <th>Example-Montana - TEMPS</th> <th>_ 0</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Example-Montana - TEMPS                                                                                                                                                                                                                                                             | _ 0         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Image: Surface Characteristic      | File Run Help           |                                                                                                                                                                                                                                                                                     |             |
| Pavement Structure   Image: Surface Characteristics   Image: |                         |                                                                                                                                                                                                                                                                                     |             |
| Implify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | Pavement Structure                                                                                                                                                                                                                                                                  |             |
| Image: Comparison of the Agg.     Image: Comparison of t                                                                                                                                                                           | Materials               | Layer Name: Subgrade   Add                                                                                                                                                                                                                                                          |             |
| Cimatic Data   Surface Characteristics   Vertice   Pavement Structure   Wesh Generator     Mesh Generator     Pavement Surface     Pavement Structure        Pavement Structure     Pavement Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Layer Name Material Type Thickness (m) Start Depth (m) End Depth (m) C                                                                                                                                                                                                              | Description |
| Surface Characteristics     Pavement Structure     Mesh Generator     Mesh Generator     Pavement Surface     Pavement Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Climatic Data           | Thickness (m):         1.00 (m):         Asphalt         Asphalt         Asphalt         Module         0.20         0         0.2           Base         Coarse Agg.         0.25         0.2         0.45           Subgrade         Fine Ann         1         0.45         1.45 |             |
| Pavement Structure     Pavement Section       Mesh Generator     Image: Comparement Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Surface Characteristics | stics Description:                                                                                                                                                                                                                                                                  |             |
| Mesh Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pavement Structure      | e Pavement Section                                                                                                                                                                                                                                                                  |             |
| Asphalt<br>Base<br>Subgrade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mesh Generator          | Pavement Surface     Asphalt   Base   Subgrade                                                                                                                                                                                                                                      |             |



WESTERN REGIONA

SUPERPAVE CENTER

## Pavement Temperature Profile Prediction **TEMPS – Mesh Generator**







# Pavement Temperature Profile Prediction **TEMPS – Run Analysis**

### **Time Efficiency of Computation: Implicit Scheme**

Run time for **1 years** analysis period (3.10 GHz proc. and 4.00 GB RAM)

< 10 seconds using 1 hour time step\*



\* Note: <u>1 hour time step</u> was chosen without jeopardizing the model accuracy for prediction.





## Pavement Temperature Profile Prediction **TEMPS – Output Results**







WESTERN REGIONAL

SUPERPAVE CENTER

## Pavement Temperature Profile Prediction **TEMPS – Output Results**







### Pavement Temperature Profile Prediction **TEMPS – Output Summary**

|                 |                         |                              | Exa             | imple-Monta     | na - TEMPS     |                    |                |            |            |            | -         |
|-----------------|-------------------------|------------------------------|-----------------|-----------------|----------------|--------------------|----------------|------------|------------|------------|-----------|
| Export Run Help |                         |                              |                 |                 |                |                    |                |            |            |            |           |
|                 |                         |                              |                 |                 |                |                    |                |            |            |            |           |
|                 | Pavement Temperature Pr | ofile Summary                |                 |                 |                |                    |                |            |            |            |           |
| Output          | Date-Time ↓ Depth →     | z = 0.01 m                   | z = 0.02 m      | z = 0.03 m      | z = 0.04 m     | z = 0.05 m         | z = 0.06 m     | z = 0.07 m | z = 0.08 m | z = 0.09 m | z = 0.1 m |
|                 | 12/1/2001 - 0:00        | -1.14°C                      | -1.17°C         | -1.2°C          | -1.23°C        | -1.26°C            | -1.29°C        | -1.32°C    | -1.35°C    | -1.38°C    | -1.41°C   |
|                 | 12/1/2001 - 1:00        | -1.39°C                      | -1.37°C         | -1.36°C         | -1.36°C        | -1.36°C            | -1.37°C        | -1.39°C    | -1.4°C     | -1.42°C    | -1.44°C   |
| Results         | 12/1/2001 - 2:00        | -1.47°C                      | -1.46°C         | -1.45°C         | -1.44°C        | -1.44°C            | -1.44°C        | -1.45°C    | -1.46°C    | -1.47°C    | -1.49°C   |
|                 | 12/1/2001 - 3:00        | -1.29°C                      | -1.33°C         | -1.36°C         | -1.38°C        | -1.4°C             | -1.42°C        | -1.44°C    | -1.46°C    | -1.48°C    | -1.5°C    |
|                 | 12/1/2001 - 4:00        | -0.97°C                      | -1.06°C         | -1.13°C         | -1.2°C         | -1.25°C            | -1.3°C         | -1.34°C    | -1.38°C    | -1.42°C    | -1.45°C   |
| Summary         | 12/1/2001 - 5:00        | -1.14°C                      | -1.16°C         | -1.19°C         | -1.23°C        | -1.26°C            | -1.3℃          | -1.33°C    | -1.36°C    | -1.4°C     | -1.43°C   |
|                 | 12/1/2001 - 6:00        | -1.16°C                      | -1.19°C         | -1.22°C         | -1.24°C        | -1.27°C            | -1.3°C         | -1.33°C    | -1.36°C    | -1.39°C    | -1.42°C   |
|                 | 12/1/2001 - 7:00        | -0.91°C                      | -0.99°C         | -1.06°C         | -1.12°C        | -1.17°C            | -1.22°C        | -1.27°C    | -1.31°C    | -1.35°C    | -1.38°C   |
|                 | 12/1/2001 - 8:00        | -0.86°C                      | -0.93°C         | -0.99°C         | -1.05°C        | -1.1°C             | -1.16°C        | -1.21°C    | -1.25°C    | -1.3°C     | -1.34°C   |
|                 | 12/1/2001 - 9:00        | -0.57°C                      | -0.68°C         | -0.78°C         | -0.87°C        | -0.95°C            | -1.03°C        | -1.09°C    | -1.16°C    | -1.21°C    | -1.27°C   |
|                 | 12/1/2001 - 10:00       | 0.53°C                       | 0.23°C          | -0.02°C         | -0.24°C        | -0.42°C            | -0.58°C        | -0.72°C    | -0.84°C    | -0.95°C    | -1.05°C   |
|                 | <                       |                              |                 |                 |                |                    |                |            |            |            |           |
|                 | General Summary Detaile | d Summary<br>Minimum Pavemer | nt Temperature: | -21.12°C Occure | d On: 3/8/2002 | - 8:00, At the Dep | oth of: 0.01 m |            |            |            |           |





### Pavement Temperature Profile Prediction **TEMPS – Output Summary**

|                  |                      |                     | Ex           | ample-Monta   | ina - TEMPS      |               |                           |               |               |                  |                |     |
|------------------|----------------------|---------------------|--------------|---------------|------------------|---------------|---------------------------|---------------|---------------|------------------|----------------|-----|
| rt Run Help      |                      |                     |              |               |                  |               |                           |               |               |                  |                |     |
| Ì                |                      |                     |              |               |                  |               |                           |               |               |                  |                |     |
|                  | Pavement Temperature | Profile Summary     |              |               |                  |               |                           |               |               |                  |                |     |
| ıt               | Date-Time ↓ Depth →  | z = 0.01 m          | z = 0.02 m   | z = 0.03 m    | z = 0.04 m       | z = 0.05 m    | z = 0.06 m                | z = 0.07 m    | z = 0.08 m    | z = 0.09 m       | z = 0.1 m      |     |
|                  | 12/1/2001 - 0:00     | -1.14°C             | -1.17°C      | -1.2°C        | -1.23°C          | -1.26°C       | -1.29°C                   | -1.32°C       | -1.35°C       | -1.38°C          | -1.41°C        |     |
|                  | 12/1/2001 - 1:00     | -1.39°C             | -1.37°C      | -1.36°C       | -1.36°C          | -1.36°C       | -1.37°C                   | -1.39°C       | -1.4°C        | -1.42°C          | -1.44°C        |     |
|                  | 12/1/2001 - 2:00     | -1.47°C             | -1.46°C      | -1.45°C       | -1.44°C          | -1.44°C       | -1.44°C                   | -1.45°C       | -1.46°C       | -1.47°C          | -1.49°C        |     |
|                  | 12/1/2001 - 3:00     | -1.29°C             | -1.33°C      | -1.36°C       | -1.38°C          | -1.4°C        | -1.42°C                   | -1.44°C       | -1.46°C       | -1.48°C          | -1.5°C         |     |
|                  | 12/1/2001 - 4:00     | -0.97°C             | -1.06°C      | -1.13°C       | -1.2°C           | -1.25°C       | -1.3°C                    | -1.34°C       | -1.38°C       | -1.42°C          | -1.45°C        |     |
| nary             | 12/1/2001 - 5:00     | -1.14°C             | -1.16°C      | -1.19°C       | -1.23°C          | -1.26°C       | -1.3°C                    | -1.33°C       | -1.36°C       | -1.4°C           | -1.43°C        |     |
|                  | 12/1/2001 - 6:00     | -1.16°C             | -1.19°C      | -1.22°C       | -1.24°C          | -1.27°C       | -1.3°C                    | -1.33°C       | -1.36°C       | -1.39°C          | -1.42°C        |     |
|                  | 12/1/2001 - 7:00     | -0.91°C             | -0.99°C      | -1.06°C       | -1.12°C          | -1.17°C       | -1.22°C                   | -1.27°C       | -1.31°C       | -1.35°C          | -1.38°C        |     |
|                  | 12/1/2001 - 8:00     | -0.86°C             | -0.93°C      | -0.99°C       | -1.05°C          | -1.1°C        | -1.16°C                   | -1.21°C       | -1.25°C       | -1.3°C           | -1.34°C        |     |
|                  | 12/1/2001 - 9:00     | -0.57°C             | -0.68°C      | -0.78°C       | -0.87°C          | -0.95°C       | -1.03°C                   | -1.09°C       | -1.16°C       | -1.21°C          | -1.27°C        |     |
|                  | 12/1/2001 - 10:00    | 0.53°C              | 0.23°C       | -0.02°C       | -0.24°C          | -0.42°C       | -0.58°C                   | -0.72°C       | -0.84°C       | -0.95°C          | -1.05°C        |     |
|                  | <                    |                     |              |               |                  |               |                           |               |               |                  |                | >   |
|                  | General Summany Det  | ailed Summary       |              |               |                  |               |                           |               |               |                  |                |     |
|                  | donordi odinindiy    |                     |              |               |                  |               |                           |               |               |                  |                | _   |
|                  |                      |                     |              |               |                  |               | _                         |               |               |                  |                |     |
|                  | Start Date Saturda   | , December 1,20     | 01 🔲 🔻       | End Date Satu | urday , Novembe  | er 30, 2002 🔲 | <ul> <li>Depth</li> </ul> | z = 0.01 m    | ✓ Up          | odate            | Export         |     |
|                  |                      |                     |              |               |                  | (10)          | D                         |               | D             |                  | 1.0            |     |
|                  | Date Ave             | arage Pavement Temp | pearture (C) | Minimum Paver | ment Temperature | e (°C) Maxim  | um Pavement Te            | mperature (C) | Pavement Temp | perature Standar | Deviation (°C) | E . |
|                  | 12/1/2001            | 1.64                |              |               | -1.4/            |               | 6.74                      |               |               | 2.81             |                |     |
|                  | 12/2/2001            | 3.77                |              |               | 1.23             |               | 8.16                      |               |               | 2.39             |                |     |
|                  | 12/3/2001            | 3.16                |              |               | 0.31             |               | 8.58                      |               |               | 2.64             |                |     |
|                  | 12/4/2001            | 0.25                |              |               | -2.33            |               | 4.51                      |               |               | 2.25             |                |     |
|                  | 12/5/2001            | -1.84               |              |               | -3./9            |               | 2.79                      |               |               | 1.93             |                |     |
| T WDCC           | 12/6/2001            | 0.13                |              |               | -3.01            |               | 5.49                      |               |               | 2.75             |                |     |
|                  | 12/7/2001            | 1.21                |              |               | -2.21            |               | 6.39                      |               |               | 2.75             |                |     |
| WESTEEN REGIONAL | 12/8/2001            | 5.92                |              |               | 1.52             |               | 11.81                     |               |               | 3.41             |                |     |
| WESTON REGIONNE  | 12/9/2001            | 4.1                 |              |               | -2.33            |               | 8.69                      |               |               | 297              |                |     |



### Pavement Temperature Profile Prediction **TEMPS – Predicted versus Measured**

#### Great Falls, MT at depth of 0.09 m (3.5 inch)



## Pavement Temperature Profile Prediction **TEMPS – Predicted versus Measured**

#### Great Falls, MT at depth of 0.09 m (3.5 inch)







# Pavement Temperature Profile Prediction **TEMPS – Additional Improvements**

- Optimize the surface characteristics for the US (Albedo, Emissivity, Absorption) using Particle Swarm Optimization (PSO) Algorithm
  - Monthly or seasonal values.
- Create/Include input files for LTPP SMP sections.
- Provide a summary of the average 7-day pavement temperature at various depths.
- Provide a summary of pavement cooling/warming rates







