Vehicle-Pavement Interaction ARC Year 5 Plan Overview

Elie Hajj, UNR March 14, 2011

Fundamental Properties and Advanced
Models ETG
Phoenix, Arizona

ARC Year 5 Plan Overview

- 3D-Move Analysis Software
 - Visco-elastic material input
 - Performance evaluation
 - Graphical display for measured stress distributions
 - Assess the need for ANN to predict non-uniform contact stress distribution
- Operational, Verification & Validation Plan

New Features in Version 2.0

Viscoelastic Materials Input Options

- Laboratory Data:
 - Symmetrical Sigmoidal Function (MEPDG) Completed
 - Non-Symmetrical Sigmoidal Function Completed
 - Symmetrical Sigmoidal Function (AMPT) Completed
 - Huet-Sayegh Model In Progress
 - User Input (Interpolation) Completed
- Model Equation
 - Witczak Model Completed
 - Huet-Sayegh Completed

New Features in Version 2.0 **Pavement Performance Models** Performance Models ➤ Once the "OK" is hit, it does internally MEPDG Models produce response ✓ AC Top Down Cracking (ft/mile) 2000 90 points at the pre-25 ☑ AC Rutting defined critical Generating Response Points in Progress locations. VESVS Models ☐ Fatigue Cracking Layer Rutting System Rutting Roughness Cancel OK OK

ANN for Non-Uniform Contact Stress Distributions

- Contact stress distribution only available under limited levels of inflation pressure and tire load
- Evaluate the impact of *linear interpolation* and extrapolation of stress distributions from currently available measurements on the response & performance of HMA pavements

ANN for Non-Uniform Contact Stress Distributions

- Pavement responses under:
 - Measured stress distributions under 5, 25, 30 & 36 kN
 - 25 kN *interpolated* from [5 kN; 30 kN]
 - 30 kN *interpolated* from [25 kN; 36 kN]
 - 25 kN extrapolated from [30 kN; 36 kN]
- Data under analysis

15

3D-Move Evaluation, Verification & Validation

The UNR team will start an Evaluation,
 Verification and Validation of the 3D-Move
 Analysis software in three phases

M

3D-Move Evaluation, Verification & Validation

- Phase I: Operational Evaluation
 - Plan will help identifying potential errors, bugs, and difficulties involved in using the software for pavement analysis purposes.

17

3D-Move Evaluation, Verification & Validation

- Phase I: Operational Evaluation
 - Address key questions:
 - Can users successfully generate the assigned examples in the 3D-Move software?
 - Is the software status clear to users at all times?
 - Are the input steps logically organized and grouped for the users?
 - Are the pictures and illustrations used in the various windows helpful to users and do they facilitate the software use/understanding?
 - Was the help menu useful and easy to navigate?
 - Is the output format clear and provide the necessary information for the analysis of the data?
 - What are the main benefits of using the software?
 - In what case studies does the user perceive a great use of the software?
 - Will the agency/user be willing to adopt the software for their pavement analysis?
 - What are the user recommendations for modification or enhancement to make the software more useful and practical?

M

3D-Move **Evaluation, Verification & Validation**

- Phase I: Operational Evaluation
 - In the process of preparing three different problem cases
 - In the process of putting together a report form

3D-Move Evaluation, Verification & Validation

- Phase I: Operational Evaluation
 - Potential Participants:

Representatives of public agencies: N. Krishnamenon (Caltrans) Magdy Mikhail (TxDOT) Dr. Charlie Pan (NDOT) Ambi Thurai (Orange County Airport, CA) Dr. Armelle Chabot (IFFSTAR, France) Ken Walsh (OHDOT)

Representatives of academic/researchers: Dr. Adrián Ricardo Archilla (Univ. of Hawaii at Manoa)

Fujie Zhou (TTI) Dr. Nam Tram (NCAT)

Representatives of private industries: Representative of FHWA: Dr. Zia Zafir (Kleinfelder) Dr Raj Dongre (DLSI),

Dr. Guangming (William) Wang (QES) Dr. Shakir Shatnawi (SHATEC)

Eric Weaver (FHWA) Nelson Gibson (FHWA)

George Way

3D-Move Evaluation, Verification & Validation

- Phase II: Verification
 - Verify selected 3D-Move Analysis pavement responses with measured field data.
 - Identify datasets that include vehicle dynamics and sufficient laboratory characterization and documentation.

21

3D-Move Evaluation, Verification & Validation

- Phase II: Verification
 - Potentially Suitable Datasets:
 - VTRC SmartRoad,
 - WesTrack,
 - IFFSTAR,
 - NCAT
 - OHDOT
 - Nottingham data
 - **.**...?

B

3D-Move Evaluation, Verification & Validation

- Phase III: Validation
 - Validate the findings from Phase II with an independent dataset

23

ARC Database

- Work element TT1d and TT1e: Development of materials and research database
 - Store information related to sources & properties of materials used in various consortium research activities.
 - Includes results update in form of reports, white papers or any other type of documents for each research task...

M

Overall Introduction

• Challenges:

- No software installation web-base system
- Flexibility (No hard-coded data)
- central database
- Multiple users (role-based infrastructure)
 - Add/Delete/Edit materials information
 - Retrieve information (Public interface)
- Different users' roles
- Common materials use
- Multiple measures for the same material
- Ability to relate material(s) to validation sections

– ...

Getting to the Application

- Using Internet Explorer, visit http://www.business.unr.edu/arc
- Click the **Login** button and enter credentials

27

Selection and Filtering

- Materials (and other elements) can be selected and filtered by
 - Material type
 - Material category
 - Organization
 - Supplier
 - Work tasks
 - Validation section
 - Component materials

Support Files (Introduction)

- Support files can include
 - reports,
 - scanned document,
 - picture,
 - just about anything related to the ARC project
- Support files can be filtered by work items (program area, category, work element, subtask)

Final Reports

- Follow FHWA Research Report Format
 http://www.fhwa.dot.gov/publications/research/general/030
 74/index.cfm
- Compliant with section 508
- Owned by FHWA.
 - With the permission of FHWA final reports can be uploaded to the ARC site otherwise
 - have a link referring to the publication

