Asphalt Research Consortium

Category	Specific Work Element	Consortium Partner				
		WRI	TTI	UWM	UNR	AAT
F1. Material / Mixture Properties	a) Cohesive and adhesive properties		Х			
	b) Viscoelastic properties		Х			
	c) Aging		Х			
	d) Healing			Х		
F2. Test method Developme nt	a) Binder tests and effect of composition			Х		
	b) Mastic testing protocol		Х			
	c) Mixture testing protocol		Х			
	d) Microstructure characterization (X-Ray CT)		Х			
	e) Verification (DSR vs. mixture fatigue)		Х	Х		
F3. Modeling	a) Asphalt microstructure model	Х	Х	Х		
	b) Micromechanics model		Х			
	c) Unified continuum fatigue model		Х			
	d) Calibration and validation		Х	Х	Х	

F1c. Aging

Objectives:

- 1. To assess material and microstructure characteristics of mixtures as affected by oxidative aging
- 2. Effect of aging on fundamental material properties

F1c. Aging

- Literature review and detailed work plan
- Develop a transport model for oxidative aging in pavements based on
 - binder oxidation kinetics,
 - model for calculating temperature as a function of time and depth
 - model for oxygen transport and diffusion in binder
- Determine effect of oxidative aging on material properties such as viscoelastic properties, fracture resistance, and healing (Later Start)

F1c. Aging

Relevance to Area Goal and Other Work Elements:

- 1. Transport model can be used to determine the extent of oxidative aging as a function of:
 - climate
 - depth below the asphalt pavement surface
 - microstructure characteristics of the mixture
 - properties of the binder (activation energies, oxygen reaction order values, oxygen diffusion coefficient)
- Change in material properties as a function of aging is an <u>essential</u> <u>input for long term modeling of pavement performance</u> using continuum models or long term modeling of mixture performance using micromechanics model

F1a. Cohesive and Adhesive Properties

Objective:

To provide a fundamental material property for micromechanical modeling of asphalt mixture

- Refine existing protocols to determine thermodynamic work of adhesion / cohesion
- Evaluate and select models and test methods to quantify mechanical work of adhesion / cohesion
- Develop relationship between thermodynamic work of adhesion / cohesion to mechanical work of adhesion / cohesion for binders and mastics

F1a. Cohesive and Adhesive Properties

Relevance to Area Goal and Other Work Elements:

- 1. Work of cohesion / adhesion is an important material property input for:
- micromechanical models to evaluate mixture performance
- analytical models that can be used as a part of the continuum model to evaluate pavement performance
- 2. This work element will produce recommendations for the most suitable protocol (thermodynamic or mechanical) to obtain these important material properties

F1b. Viscoelastic Properties

Objective:

To determine linear and non-linear viscoelastic properties of asphalt materials

- Evaluate and select suitable model to capture non-linear effect of viscoelasticity in cyclic loading, eg. Schapery's non-linear model
- Develop a test protocol to determine the parameters required for the model
- Conduct cyclic load tests under different stress / strain amplitudes and apply the model to separate viscoelastic properties and damage from the test response

F1b. Viscoelastic Properties

Relevance to Area Goal and Other Work Elements:

 Non-linearity and damage have similar manifestation in a cyclic load test. Developing a model to capture non-linear viscoelastic response of the material in a cyclic load test is important to differentiate between the two

Phase angle from cyclic load test is an averaged representation of linear & non-linear response, therefore it cannot be extended from one stress/strain amplitude to another

2. This analytical model can be combined with crack propagation criterion for use in a continuum model to predict fatigue cracking performance of a pavement subjected to different magnitudes and rates of loading.

F1d. Healing

Objective:

- 1. To determine a time dependent material property that can be used to characterize the net healing between crack surfaces, and
- 2. To determine the relationship between these properties, healing, and endurance limit

- Evaluate mechanisms of healing and select materials that best represent these mechanisms
- Review and select test methods that measure properties related to healing or a time dependent material property that quantifies healing
- Express healing in a form that can be readily accommodated in existing analytical models for crack growth
- Measure endurance limit for different materials and evaluate its relationship to healing parameter

F1d. Healing

Relevance to Area Goal and Other Work Elements:

Healing is an integral part of the fatigue process. Determining a parameter that represents the time dependent healing characteristics of different asphalt materials is an essential input for any micromechanical or continuum model

F3b. Micromechanical Models

Objective:

To develop a micromechanical model that will unify material and mixture properties to predict the performance of a mixture

Research Approach:

- Two approaches of DEM and FEM will be considered
- Two different length scales will be considered in each model:
 - o use of binder and filler properties to predict performance of mastic

o use of mastic and aggregate properties to predict performance of the mixture

• The models will be validated / calibrated using a combination of mechanical tests and NDT such as X-Ray CT

F3b. Micromechanical Models

Relevance to Area Goal and Other Work Elements:

Micromechanical models are important to evaluate and predict the material performance

In most cases, once the material properties for a suite of different materials is available, it would require only computational work to determine material proportions and binder – filler – aggregate combinations that yield the most optimal performance for a given service condition.

F3c. Continuum Fatigue Model

Objective:

To develop a continuum fatigue model that will unify material and mixture properties to predict the pavement performance in terms of fatigue and plastic or permanent deformation

Research Approach:

• Two approaches, a viscoelastic-viscoplastic model and the ???

F3c. Continuum Fatigue Model

Relevance to Area Goal and Other Work Elements:

F2. Test Methods

Objective:

- 1. To qualify and select materials during the mixture design process
- 2. To obtain material property inputs required for micromechanical and continuum modeling
- 3. To validate and/or calibrate micromechanical models

Research Approach:

Test methods and multi scale modeling will be conducted at different length scales:

- materials
- mastic
- fine aggregate matrix
- mixture