

ARC Deliverables/Products Presentation and Workshop

http://www.arc.unr.edu/

Western Regional Superpave Center (WRSC) University of Nevada, Reno

Washington, DC – January 15, 2015

ARC Deliverables/Products Presentation and Workshop University of Nevada, Reno

- 11:05 11:30: Pavement Engineering Software: Pavement Response Model to Dynamic Loads (3D-Move).
- 11:35 12:00: Rutting Performance of Asphalt Mixtures Under Critical Conditions.
- 1:00 1:25: Mix Design for Cold in-Place Recycling (CIR).
- 1:30 1:55: Pavement Engineering Software: Thermal Cracking Analysis Package (TCAP).

ARC Deliverables/Products Presentation and Workshop Rutting Performance of Asphalt Mixtures Under Critical Conditions

Standard Practice for

Determining Asphalt Mixture Critical Conditions for Rutting Evaluation by Means of Dynamic Repeated Load <u>Triaxial</u> (RLT) Test

AASHTO Designation: R XX-13

1. SCOPE

www.wrsc.unr.edu ; www.arc.unr.edu

- 1.1. This standard practice describes the methodology for rutting susceptibility evaluation for hot mix asphalt (HMA) by means of dynamic Repeated Load <u>Triaxial</u> (RLT) test. This practice is intended for different types of asphalt mixtures having unmodified or modified asphalt binders.
- 1.2. This practice addresses the procedure to determine the RLT testing conditions regarding the loading pulse duration, rest period, and the stresses. In addition, a mechanistic-based process susceptibility of HMA mixtures is determined as the stresses.

Critically Designed Asphalt Mixtures Introduction,

- Every asphalt mixture has:
 - Critical temperature
 - Critical loading rate
 - Critical stress condition

Critical Conditions beyond which the mix will become highly unstable!

Critically Designed Asphalt Mixtures Introduction₂

- Critical conditions must be checked against expected field conditions where the mix will be placed.
- Optimization of Asphalt Mixture components in the design, production, and construction stage can lead to good performing HMA mixtures for highways and intersections.

Asphalt Mixture

T_{Critical} = Min temperature beyond which HMA becomes unstable

Critically Designed Asphalt Mixtures Mechanistic-Based Approach: Five Steps₂

Critically Designed Asphalt Mixtures Established Predictive Equations for T_{Effective}

> $T_{Effective}$ for a RD ≤ 0.25 inches at 90% reliability

 $= 20.6099 + 0.8764(MAAT) + 1.5870(\sigma MAAT) - 2.0006(Wind) + 0.1079(Sunshine)$

 $-0.0891(Rain) + 14.7893(\log(Freq)) - 3.5748(\log(ESALs)) + 0.1677(PG_{HT})$

> $T_{Effective}$ for a RD ≤ 0.50 inches at 90% reliability

 $= 25.7540 + 0.8287(MAAT) + 1.4932(\sigma MAAT) - 2.1949(Wind) + 0.1101(Sunshine)$

 $-0.0967(Rain) + 16.2478(log(Freq)) - 4.0479(log(ESALs)) + 0.1416(PG_{HT})$

Critically Designed Asphalt Mixtures Flow Number Criteria

No Braking Condition

Design 20-year ESALS (millions)	< 3	3 to 10	10 to 30
Critical Flow Number (FN _{Critical})	5,000	7,000	13,000

Braking Condition

Critical FN criteria still need to be established

Critically Designed Asphalt Mixtures Validation Mixes/Projects,

Mix ID	Location	Const. Date / Initial in- place air voids	Traffic Speed	20-year MESAL	Rut Depth
B. Ave_(6428)	Bravo Ave., Reno, NV.	August 2008 / 6%	Stopped to 25 mph	1	≤ 0.05 in. after 4 years of service
M. Lane_(6428)	Moana Lane Ext., Reno, NV.	November 2006 / 6%	40 mph	6	≤ 0.09 in. after 6 years of service
US95_(7622)	US95, Las Vegas, NV.	September 2007 / 7%	50 mph	18	No visible rutting
NV55_(6422)	WesTrack Cell 55	June 1997 / 4%	40 mph	30 (0.58 ¹)	0.87 in. after 5 months of service
NV19_(6422)	WesTrack Cell 19	March 1996 / 8%	40 mph	30 (4.8 ¹)	0.52 in. after 2.5 years of service
MN01_(5828)	MnRoad, I-94,Cell 1	September 1992 / 6.5%	65 mph	12.0 (8.5 ¹)	0.46 in. after 13 years of service
MN17_(6428)	MnRoad, I-94, Cell 17	July 1993 / 7%	65 mph	12.1 (10 ¹)	0.34 in. after 15 years of service
MN20_(5828)	MnRoad, I-94, Cell 20	July 1993 / 7%	65 mph	12.1 (5.1 ¹)	0.48 in. after 9 years of service
MN33_(5828)	MnRoad, Low Volume Closed Loop, Cell 33	August 1999 / 6%	35 mph	0.4 (0.13 ¹)	0.65 in. after 8 years of service
MN35_(5840)	MnRoad, Low Volume Closed Loop, Cell 35	August 1999 / 5.5%	35 mph	0.4 (0.13 ¹)	0.73 in. after 8 years of service

www.wrsc.unr.edu; www.arc.unr.edu

Slide No. 10

WESTERN REGIONAL SUPERPAVE CENTER

Critically Designed Asphalt Mixtures Validation Mixes/Projects₂

Mix ID	Target RD90% = 0.25 inch	Target RD90% = 0.50 inch	EN	Predicted Performance	Field Performance -	
	Average FN T-Effective	Average FN T-Effective	Critical	at 90% Reliability (inch)	Measured RD (inch)	
B. Ave_(6428)	No Flow	No Flow	5,000	≤ 0.25	\leq 0.05 (4 yrs)	
MN33_(5828)	1,695	3,645	5,000	> 0.50	0.65 (8 yrs)	
MN35_(5840)	1,745	4,395	5,000	> 0.50	0.73 (8 yrs)	
M. Lane_(6428)	No Flow	No Flow	7,000	≤ 0.25	\leq 0.09 (6 yrs)	
US95_(7622)	No Flow	No Flow	13,000	≤ 0.25	0.00 (5 yrs)	
NV55_(6422)	3,395	8,395	13,000	> 0.50	0.87 (0.4 yrs)	
NV19_(6422)	2,595	5,895	13,000	> 0.50	0.52 (2.5 yrs)	
MN01 (5828)	1.645	6.095	13.000	> 0.50	0.46 (13 vrs)	
MN17_(6428)	10,495	No Flow	13,000	≤ 0.50	0.34 (15 yrs)	
MN20_(5828)	1,296	3,845	13,000	> 0.50	0.48 (9 yrs)	

Critically Designed Asphalt Mixtures Critical Review of Proposed Approach

Consider traffic level?	Yes (ESALs)
Consider operational speed?	Yes
braking/non-braking conditions?	Yes / Requires further validation for braking condition
Approach relies on mechanistic analysis?	Yes (MEPDG Predictions using calibrated rutting models)
Consider climate conditions?	Yes ($T_{Effective}$ function of MAAT, Wind, Sunshine, Rain, etc.)
Confined test?	Yes (Predictive equations)
Consider HMA stiffness?	Yes (E*)
Consider pavement structure?	Yes (Affect deviator and confining stress)
Consider Initial In-place air voids?	Yes
Criteria based on rut depth level?	Yes (0.25 or 0.50" at 90% reliability level)
Requires additional processing data?	No (Traditional analysis of FN data)
Can be implemented in AMPT?	Not yet / Requires equipment modification to be able to handle the proposed stress levels and pulse durations. Work on equivalent testing conditions.

Critically Designed Asphalt Mixtures Draft AASHTO Standard

(http://www.arc.unr.edu/Outreach.html#TechDevelopmentProducts)

Standard Practice for Determining Asphalt Mixture Critical Con Evaluation by Means of Dynamic Repeate (RLT) Test	ndition :d Loa	is for Rutting d <u>Triaxial</u>	DETERMINING EFFECTIVE PAVEM The effective pavement temperature (TETECON) is asphalt pavement temperature (TEAAST) that will end of the 20-year design period at 90% reliabili 12.7 mm (0.50 in.). Determine TETECON as the testing temperature to or Equation 2:	ENT TEMPERATURI s obtained as the equivale result in the same level o ity rut depth of 6.4 mm ((be used in the RLT using)	E ent annual f rutting at the 0.25 in.) or Equation 1
 SCOPE This standard practice describes the methodology for for hot mix asphalt (HMA) by means of dynamic Rep This practice is intended for different types of asphal modified asphalt binders. This practice addresses the procedure to determine t regarding the loading pulse duration, rest period, an stresses. In addition, a mechanistic-based processor susceptibility of HMA mixtures is damageneous stresses. 	rutting supeated Lo t mixtures 12. 12.1.	usceptibility evaluation ad Triaxial (RLT) test. s having unmodified or DETERMINING TI The selected testing con pulse charactenistics are conditions encountered	$\begin{aligned} F_{ffective} &= 20.6099 + 0.8764(MAAT) + 1.5870(\sigma M. 1677(PG_{HT}) &= 1.0891(Rain) + 14.7893(log(F) &= 1.677(PG_{HT}) & \text{if nut depth citterion < 6.4} \\ T \text{ rut depth citerion of } 12.7 \text{ mm}(0.50 \text{ in}); \\ F_{ective} &= 25.7540 + 0.8287(MAAT) + 1.4932(\sigma MAT) + 1.4932(\sigma MAT) + 1.62478(log(F)) &= 1.62478(log(F))) &= 1.62478(log(F)) &= 1.62478(log(F)) &= 1.62478(log(F))) &= 1.62478(log(F)) &= 1.62478(log(F)) &= 1.62478(log(F)) &= 1.62478(log(F))) &= 1.62478(log(F)) &= 1.62478(log(F))) &= 1.62478(log(F)) &= 1.62478(log(F))) &= 1.62478(log(F)) &= 1.62478(log(F))) &= 1.62478(log(F)) &= 1.62478(log(F)) &= 1.62478(log(F))) &= 1.62478(log(F)) &= 1.62478(log(F)) &= 1.62478(log(F)) &= 1.62478(log(F)) &= 1.62478(log(F))) &= 1.62478(log(F)) &= 1.$	(MAT) - 2.0006(Wind) + req) - 3.5748(log(ESALs) + mm (0.25 in.) $(MAT) - 2.1000 + 10000 + 1000 + 100000 + 10000 + 10000 + 100000 + 1000000 + 10000000 + 100000000$	^{s)) +} (l) — ling
	12.2.	Compute the deviators $log(t_p) = -0.00353$ (2) where: t_p = deviator stress puls $J_{effective}$ = effective pav S = vehicle operational	stress pulse duration (t_{ρ}) using Equation 3 $T_{Effective}$) - 0.0236(S) + 0.00015(S) ² we duration, seconds; ement temperature, °C; l speed, mph.	3: ¹ – 0.6654 <i>(3)</i>	
www.wrsc.unr.edu ; www.arc.unr.edu	12.3.	Compute the deviators $t_r = \frac{L}{s}$	stress rest period (<i>t</i> _e) using Equation 4:	Slide No. 13	WESTERN REGIONAL SUPERPAVE CENTER

Critically Designed Asphalt Mixtures Impact of Mixture Characteristics

Thank You!

Visit our websites at: <u>www.wrsc.unr.edu</u> www.arc.unr.edu

University of Nevada, Reno, www.wrsc.unr.edu

WESTERN REGIONAL SUPERPAVE CENTER