

ARC Deliverables/Products Presentation and Workshop

http://www.arc.unr.edu/

Western Regional Superpave Center (WRSC) University of Nevada, Reno

Washington, DC – January 15, 2015

www.wrsc.unr.edu ; www.arc.unr.edu

ARC Deliverables/Products Presentation and Workshop University of Nevada, Reno

- 11:05 11:30: Pavement Engineering Software: Pavement Response Model to Dynamic Loads (3D-Move).
- 11:35 12:00: Rutting Performance of Asphalt Mixtures Under Critical Conditions.
- 1:00 1:25: Mix Design for Cold in-Place Recycling (CIR).
- 1:30 1:55: Pavement Engineering Software: Thermal Cracking Analysis Package (TCAP).

ARC Deliverables/Products Presentation and Workshop Pavement Response Model to Dynamic Loads: <u>3D-Move Analysis Software</u>

www.wrsc.unr.edu; www.arc.unr.edu

How to Download 3D-Move! Visit ARC website @ <u>http://www.arc.unr.edu/Software.html</u>

WESTERN REGIONAL

SUPERPAVE CENTER

3D-Move Analysis Software Over 750 Users from around the world!

Slide No. 5

www.wrsc.unr.edu; www.arc.unr.edu

Summary: Elements of the 3D-Move Analysis Software

(1) Uses Finite-Layer Continuum Approach – Takes Advantage of Horizontally-Layered Pavement Layers; No Discretization; No Lateral Boundary Effects. – Computer Efficient.

(2) Models Moving 3D-Surface Stresses (Dynamic; Normal & Shear Contact Stresses) – Handles Vehicle Speed and Vehicle Braking.

(3) Direct Use of Frequency-Sweep Data (Viscoelastic Modeling).

(4) Ideally-Suited when Responses are Needed at a Selected Few Locations - Computer Efficient.

Important Attributes of Pavement Modeling

Factor	Layered Elastic	Finite Element	3D-Move					
		Method (FEIVI)	MODEI					
Important Attributes of Pavement Modeling: Load-Related								
Non-Circular Loaded Shape	NO	YES	YES					
Non-Uniform Vertical Contact Stress	NO	YES	YES					
Contact Shear Stresses	NO	VES	VEC					
(Braking & Sloping Pavements)	NO	TES	TES					
Moving Load (Non-Stationary) and	NO		VEC					
Inertia Included (i.e. Dynamic)	NO	NU/YES	ies					
Important Attributes of Pavement Modeling: Material Properties								
Viscoelastic Properties (Modulus and Phase Angle)	NO	YES	YES					
Vehicle Speed	NO	YES	YES					
Direct Use of Freq. Sweep Data	NO	NO	YES					

Attributes of 3D-Move, Non-Uniform Contact Stress Distribution,

- Non-Uniform 3D Contact Stress Distributions (Normal and Shear Contact Stresses)
 – Vertical, Longitudinal, and Transverse Directions
- Shear interface stresses are needed for braking and sloping pavements.

VESTERN REGIONA

SUPERPAVE CENTER

Attributes of 3D-Move₂ Non-Uniform Contact Stress Distribution₂

- Hajj et al. (2012)^a:
 - Impact of non-uniform contact stress distribution on pavement responses & performance found to be *significant*.
 - Effect of vehicle braking on pavement responses *should be considered* when designing pavements that are to be placed at intersections and sopping areas.

^a Hajj et al. (2012). <u>Influence of tire-pavement stress distribution, shape, and braking on performance predictions for</u> <u>asphalt pavement</u>. Transportation Research Record: Journal of the Transportation Research Board, Vol 2306, pp.73-85.

Attributes of 3D-Move₃ Non-Uniform Contact Stress Distribution₃

- Ready-to-use database:
 - Council for Scientific and Industrial Research (CSIR)
 - University of California at Berkeley (UCB)
 - Nevada Automotive Test Center (NATC)
 - VRSPTA: 123 (Single)+ 38 (Supersingle)+15 (Dual) =176
 - Kistler: 64 (Dual) + 64 (Singled out Dual) + 64 (widebase) + 48 (Dual with differential Pressure) = 240
 - Others

Attributes of 3D-Move₄ Non-Standard Vehicles

- End Dump Trucks
 - Belaz (5)
 - Caterpillar (6)
 - Komatsu (11)
 - Terex (6)
- Fork Lift
 - Hyster (9)

ption E : Special N	on-Highway Vehicles	-	1 1 1 1 M M (1)
Vehicle Type End Dump Truck Fork Lift	Manufacturer BELAZ Caterpillar Komatsu Terex	Product ID BELAZ-7513 Seri BELAZ-7530 Seri BELAZ-7540 Seri BELAZ-7547 Seri	(For User Defind Case , Enter ID here) ries ries ries Click for Table of Vehicle
Vehicle Configur	ation	BELAZ-7555 Seri	Specification
Front Axle	Single Axle - Single Tire		RE
Rear Axle	Single Axle - Dual Tire		- ALE
L1 209 in	S1 56 in		
Tire data			
Tire Type	GoodYear 33.00-51	-	
Loaded Area	965 in ²		\bigcirc \bigcirc
-Load Distribution	1		\bigcirc
Front Tire Load (When Empty)	50,024 Ib	τ \bigcirc \bigcirc
Rear Tire Load(When Empty)	28,944 Ib	
Pay Load		lb	11
(Max Pay Load is	286,631 lb)		
Load Distributior As Percentage	Front Axle 1	Rear Axle 67	
Load Distribution as Load Value	lb	lb	

www.wrsc.unr.edu ; www.arc.unr.edu

Attributes of 3D-Move, Built-in Model for Braking of a Semi-Trailer Truck

- Load Distribution During Braking:
 - 11 equilibrium equations
 - 3 characteristic equations:
 - Application (treadle output) v/s actuation (brake chamber) pressure/axle – linear brake system.
 - Brake force v/s actuation pressure on each axle.
 - Dynamic load transfer coefficient.

Attributes of 3D-Move,

Materials Input: Viscoelastic Property of AC

- Dynamic Modulus and Phase Angle data:
 - Symmetrical Sigmoidal Function (MEPDG)
 - Non-Symmetrical Sigmoidal Function
 - Symmetrical Sigmoidal Function (AMPT)
 - User Input (Interpolation)
- Model Equation

 Witczak Model (1-37A)

Attributes of 3D-Move_s Pavement Performance Predictions

ormance Models											
 NCHRP (1-37A) Models AC Top Down Cracl AC Bottom Up Crace AC Rutting Base Rutting Subbase Rutting Subbase Rutting Subgrade Rutting 	king (ft/mile) king (%) (in) (in) (in) (in)	Limiting Valu 2000 25 0.25 0.30 0.25 0.20	es Reliability 90 90 90 90 90 90 90		Pavement Layers Layer 2 - Base Layer 3 - Agrhaft Layer 4 - Subbase Layer 5 - Subgrade	Top Down Crackin N C N F - Number of rej C C N F - Tensile strain E - Stiffness of th Hac - Thickness of Analysis Types Nationally C Stiffness Nationally C	$\begin{array}{l} 9 & \underline{AC} \mbox{Bottom} \mbox{Up} \mbox{Cracking} & \underline{AC}\mbox{I} \\ f = 0.00432 \mbox{CC}_{H} \mbox{K}_{f1} \mbox{β} \\ C = 10^{4.94} \Big[\frac{v_{bs}}{v_{s} + v_{bs}} & 0.69 \Big] \\ H = \frac{1}{0.01 + \frac{1}{1 + e^{(15.676)}}} \\ e^{1000} \mbox{bill} \\ e^{1000} \mbox{to} \mbox{to} \mbox{faigue} \mbox{cracking} \\ at the critical location (m/m) \\ e nateria (pii) \\ \mbox{AC} \mbox{lapse} \mbox{(m)} \\ alterated \mbox{Model} \\ d \mbox{Model} \\ \end{array}$	Ruting Transfer Function $f_1\left(\frac{1}{\epsilon_t}\right)^{k_{f_2}\beta_{f_2}}\left(\frac{1}{E}\right)^{k_{f_2}\beta_{f_2}}\left(\frac{1}{E}\right)^{k_{f_2}\beta_{f_2}}$ 00 00 00 Volumetric Proper Air Voids (Va) Effective Binder C Regression Coeffi k_{f_1} 0.00 k_{f_2} 3.54	κrs NCHRF krs βfs ties 4.1 Content (Vbe) 7.6 cients 77565 77565 βrs 32 βrs	2(1-37A) Models Info (2) (2) (2 By Volume)	
Fatique Cracking	(%)							k _{fa} 1.28	1 β _{f1}	-	
_	N. 17		Performance Model Ou	tput Summary - MEF	PDG						
Layer Rutting	(in)		Laure	Individual Laure's I	Distropa Rijmmani						
System Rutting	(in)		Layer 1 - Asphalt Layer 2 - Base Layer 3 - Asphalt	Combined Layer	Distress Type		Distress Target	Reliability Target	Distress Predicted	Reliability Predicted	Acceptal
Roughness	(Slope Variance)		Layer 5 - Subgrade		AC Top Down Crackir	ng (ft/mile)	2000	90	0.00	100	Pass
			All Layers	Asphalt (1)	AC Bottom UP Crac	king (%)	25	90	5.67	96	Pass
					AC Rutting (in	า)	0.25	90	0.49	1.7	Fail
				Base (2)	Base Rutting (in)	0.30	90	0	100	Pass
		G			AC Bottom UP Crac	king (%)	25	90	0.15	100	Pass
				Asphalt (3)	AC Rutting (in	ป	0.25	90	0	100	Pass
					Subbase Rutting	g (in)	0.25	90	0.02	100	Pass
				Subgrade (5)	Subgrade Ruttin	g (in)	0.20	90	0.07	99.9	Pass

www.wrsc.unr.edu ; www.arc.unr.edu

Examples of 3D-Move Applications (1) Estimate of Damage Under Off-Road Farm Vehicles,

- South Dakota DOT (Project SD99-15) Objectives:
 - What additional damage off-road vehicles impose?
 - Should they be allowed on public roads?
- Experimental Approach:
 - Construct instrumented field sections
 - Measure pavement responses
 - Use measured response to validate 3D-Move
 - Use 3D-Move to evaluate damage

Examples of 3D-Move Applications (1) Estimate of Damage Under Off-Road Farm Vehicles₂

16

Examples of 3D-Move Applications (1) Estimate of Damage Under Off-Road Farm Vehicles₃

- Characteristics of Off-Road Equipment
 - Massive Tires: 0.95 m vs. 0.20 m (Conventional)
 - Tire Lugs: off-road vs. conventional tires
 - Tire Loads: 100 kN vs. 22.5 kN (Conventional)
 - Tire Pressure: 250 kPa vs. 850 kPa (Conventional)
 - Vehicle Speed: 60 km/h vs. 100 km/h (Conventional)

www.wrsc.unr.edu; www.arc.unr.edu

Examples of 3D-Move Applications (1) Estimate of Damage Under Off-Road Farm Vehicles₄

- Implementation:
 - Do not ban agriculture equipment on highways.
 - Allow empty Terragators and Grain Carts to move over highway pavements.
 - Use legally loaded standard trucks to move fertilizers and grains to the field locations.

Examples of 3D-Move Applications (2) Analysis of Pavement Performance at Intersection,

- Vehicle loads at intersections (on/off ramps) are significantly different from those at highways.
- Asphalt Mixtures at/near a braking stop:
 Subjected to more complex stresses due to *braking*.
 Behaves weaker as subjected to slow moving or stopped vehicles.

Examples of 3D-Move Applications (2) Analysis of Pavement Performance at Intersection₂

- Vehicle *load redistribution* during braking.
- Additional *interface shear stresses* due to braking.
- Single vs. wide base tires.
- Non-uniform tire contact pressure distribution.
 - Trailer Axles Driving Axles Steering Axle W_{p} , $\cos(\phi)$ W_{p} ,sin(ϕ) $W_{2}(a/g)$ W1, COS(Ø) W_1 , sin(ϕ) W1.(a/g) XXXX , F_{t2} F_{t_1} ₩t Fd1 dz My Steering Axle -C'-+

etc...

Slide No. 20

Examples of 3D-Move Applications (2) Analysis of Pavement Performance at Intersection₃

www.wrsc.unr.edu ; www.arc.unr.edu

Examples of 3D-Move Applications (3) Assessing Damage from Bus Rapid Transits,

http://www.newflyer.com/index/xcelsior

		Front	Drive	Rear		
	GAWR Load, lbs	15,653	20,944	14,330		
	Axle Configuration	Single Axle/ Single Tire	Single Axle/ Dual Tires	Single Axle/ Single Tire		
	Tire Pressure, psi	120	85	110		
en.wikipedia.org/wiki/List_of_RTC_Transit_routes	Tire Type	Michelin XZU/305/70R 22.5				
		Front	Drive	Rear		
	GAWR Load, lbs	16,094	28,660	25,574		
	Axle Configuration	Single Axle/ Single Tire	Single Axle/ Widebase Tire	Single Axle/ Widebase Tire		
	Tire Pressure, psi	130	130	130		
o://www.rtcsnv.com/transit/	Tire Type	275/70R 22.5	494/45 R22.5	494/45 R22.6		
-1770 C		Front	Drive	Rear		
://www.newflyer.com/index/xcelsior	GAWR Load, lbs	14,780	24,250	27,760		
	Axle Configuration	Single Axle/ Single Tire	Single Axle/ Dual Tires	Single Axle/ DualTire		
	Tire Pressure, psi	120	120	120		
www.wrsc.unr.edu : www.arc.unr	Tire Type	Michelin XZU/305/70R 22.5				

Examples of 3D-Move Applications (4) Pavement Damage Due to OS/OW or SHL Moves,

- "Non-Generic" axle and tire configurations.
- Slow moving loads.

Thank You!

Visit our websites at: <u>www.wrsc.unr.edu</u> www.arc.unr.edu

University of Nevada, Reno, www.wrsc.unr.edu

