

A Micro-scale Approach to Evaluate the Asphalt Low Temperature Properties

Yue Hou, Ph.D., Dept. of CEE, Virginia Tech Dong Wang, Ph.D., Dept. of CEE, Virginia Tech Wenjuan Sun, Ph.D., Dept. of CEE, Virginia Tech Troy Pauli, Ph.D., Western Research Institute Linbing Wang, Ph.D., P.E., Dept. of CEE, Virginia Tech

CONTENTS

1. Introduction

2. Evaluation of Fatigue properties of asphalt binder, mastic and mixture

3. Application of Phase-Field Method and MD Simulations in Asphalt Binder Fracture

4. Conclusions and Challenges

Introduction

> Research Objectives

- The fatigue cracking and fracture are the two most common distresses on state highway.
- What are the root causes and how to evaluate them?

Introduction

Numerical Modeling

Finite Element Method; Phase-Field Method; Molecular Dynamics Simulation

> Experiments

Direct Tension Test; X-ray Tomography; Atomic Force Microscopy

Digital Mix Design

Digital Specimen and Digital Test

CONTENTS

1. Introduction

2. Evaluation of Fatigue properties of asphalt binder, mastic and mixture

3. Application of Phase-Field Method and MD simulations in Asphalt Binder Fracture

4. Conclusions and Challenges

Experiment: fatigue test

Direct Tension Tester (DTT) is altered to build up a new fatigue test procedure.

Loading fixture

Chiller system

Sample Preparation

Sample Installation

P Testbu	ilder - 1.00	in T - Lates	t							E
File Edit 1	View Tools									
S	topped		Next Ste			Skip la Step open press				
	Left	Right	Clamp	Intensifier	Bucking	Pump Speed	D ata Acq	Digital Cluts	Events	F
Step: 1			1	<u>_</u>	_	Not Enabled			Axis Done	
Step: 2	₽	₽	₽		₽	Not Enabled			Axis Done	1
Step: 3				₽	₽	Not Enabled	Start Data 1		Avie Done	
Step: 4	Loop to Step		₽	₽		Not Enabled		~	Axis Done	
Step: 5	Insert Step I Insert Step I Delete	Below Above	₽	C	₽	Not Enabled			Axis Done	
Step: 6			₽	₽	₽	Not Enabled			Axis Done	
Test Nar Sove	me: 1.00 in 1	-Latest	Delete	-						
Stopped			Curen	Step = 0		j	ŀ	lo Start Input I	Defined	

- ✓ New fatigue test procedure can be written.
- ✓ Cyclic tensile loading can be applied.
- \checkmark Test temperature can be controlled.

- > Materials
- Asphalt Binder
 PG 70-22 Binder
- Asphalt Mastic
 - PG 70-22 Binder + Quartz Filler
- Asphalt Mixture
 - PG 70-22 Binder + Aggregates
 with controlled size
 (0.5~4.76mm)

> X-ray Tomography

X-ray system (Wang, 2003)

Sky Scan 1174 Compact X-ray system

Fatigue Test Comparison

Specimens	Average final strain	Average number of cycles		
Binder	0.0059	105		
Mixture no filler	0.0124	1676		
Mixture with 30% filler	0.0459	12226		
Mastic with 20% filler	0.0587	16395		
Mastic with 30% filler	0.0684	19208		
Mastic with 40% filler	0.0652	17457		

Numerical Modeling

100

Application of PFM in Mode I Cracking in Asphalt Binder

> Digital specimen and digital test

- ✓ Center node of the loading surface
- ✓ Number of loadings and final strain

	Lab r	esults	Simulation results		
	Number of		Number of		
	loading	Strain	loading	Strain	
	cycles		cycles		
Binder	105	0.0059	105	0.0042	
30% filler	10208	0.0694	10200	0.0509	
Mastic	19208	0.0084	19200	0.0308	
Mixture with filler	12226	0.0459	12200	0.0372	

CONTENTS

1. Introduction

2. Evaluation of Fatigue properties of asphalt binder, mastic and mixture

3. Application of Phase-Field Method and MD Simulations in Asphalt Binder Fracture

4. Conclusions and Challenges

Phase Field and Interface

Material between intact (ϕ =1) and fully broken (ϕ =0) states, is considered as 0< ϕ <1. Two kinds of interface can be used.

Figure 1 (a) Sharp interface (b) Diffuse interface*

Fundamental Concepts in PFM

- A model for a phase field can be constructed by physical arguments if one have an explicit expression for the free energy of the system.
- The driving force of the system is either Chemical potential or the gradient of Chemical potential.
- I. Free energy $(f(\phi))$
 - A thermodynamic potential that measures the "useful" or processinitiating work of a system.
 - It is calculated by MD simulation.
- II. Chemical potential ($G \text{ or } \mu$)
 - A measure of the potential that a substance has to produce in order to alter a system.
 - It is calculated as the variational derivative of free energy with respect to order parameter.

Phase kinetics

Spinodal decomposition*

Two components can separate into distinct regions (or phases) with distinctly different chemical compositions and physical properties.

• A simple example

The figure shows that a cup of red ink is well mixed with water.

After a certain time, ink and water will get separated due to different gravitational potential energy.

Asphalt fracture develops since fracture phase and intact phase has different chemical potential and they get phase separated.

*Figure is from http://pruffle.mit.edu/3.00/Lecture_32_web/node3.html

• Phase field equations

□ Total free energy is expressed as

$$F = \int_{\Omega} (f_{gr} + f_{local} + f_{el}) d\Omega$$

> The gradient energy density $f_{gr} = \frac{1}{2}\lambda |\nabla \phi|^2$.

> The local free energy density $f_{local} = \frac{\lambda}{4\epsilon^2} (1-\phi)^2 (1+\phi)^2$ is a commonly used double well potential.

➤ The elastic energy density $f_{el} = \frac{E(\phi)}{2(1+\nu)} (\frac{\nu}{1-2\nu} (\varepsilon_{ii})^2 + \varepsilon_{ik} \varepsilon_{lk})$ Where $E(\phi) = E + (E - E_0)h(\phi)$ is the elastic modulus
and $h(\phi) = -\frac{1}{4}\phi^3 + \frac{3}{4}\phi + \frac{1}{2}$ interpolates the void phase ($\phi = -1$) and
the intact phase ($\phi = 1$);

Possion's ratio $\nu = 0.3$ is phase- independent.

□ Allen-Cahn equation (Non-conserved case)

$$\frac{\partial \phi}{\partial t} = -M \frac{\delta F}{\delta \phi}$$

• A simple case with self-adaptive meshing

Multi-scale approach

> MD simulations

Molecular structure of crack tip in the molecular dynamics (MD) model: (a) & (b) initial view molecular structure from different views (c) molecular structure after tension failure

Multi-scale Approach

Multi-scale Approach based on MD and PFM \succ

von mises stress in multiscale model (Pa) x 10 11 0.055 10 0.054 9 0.053 8 0.052 (щ) 0.051 ∧ 0.05 6 0.049 0.048 3 0.047 0.046 0.02 0.021 0.022 0.023 0.024 0.025 0.026 0.027 0.028 0.029 x (µm)

10

CONTENTS

1. Introduction

2. Evaluation of Fatigue properties of asphalt binder, mastic and mixture

3. Application of Phase-Field Method and MD Simulations in Asphalt Binder Fracture

4. Conclusions and Challenges

Conclusions and Challenges

Conclusions

- Filler improves binder fatigue resistance. 30% optimum filler content.
- Digital Specimen and Digital Test improve understanding.
- Phase-field Method could capture and simulate the asphalt fracture.
- A multi-scale approach could tie macro properties such as the stress concentration with molecular structure.

Future Plan

Further verification and validation

