VEHILCE-PAVEMENT INTERACTION

- Workshop on Super-Single Tires
- Mixture Design to Enhance Safety and Reduce Noise of HMA
- Pavement Response Model to Dynamic Loads

- Review of progress on the use and impact of super single tires on pavements
- Plan future activities in this area
- October 24-25, 2007
- Turner Fairbank Highway Research Center
- 12-15 U.S. and International participants

- Develop a fundamental model to predict the response of flexible pavements to traffic loads moving at a certain speed.
- To be used as an advanced analysis model for
 - Intersections
 - Heavy loads
 - Off-road equipments

PAVEMENT MODEL

- I. Dynamic Load
 - Truck suspension Road roughness
 - •
 - Braking/Acceleration
 - Speed

II. Tire-Pavement Interface

- Inflation pressure
- Tire type Tire load
- Speed

III. Pavement Response

- Inertia
- Material characteristics

PAVEMENT MODEL

S<u>uper Pa</u>ve

Material Characterization

- HMA Layer: viscoelastic properties
 - Dynamic modulus master curve
 - Inertia
 - Internal damping (phase angle)

Unbound material: linear elastic properties

- Modulus
- Inertia
- Internal damping

III. Pavement Response

Material Characterization

• HMA Layer: Variation of Dynamic Complex modulus with loading frequency

 $E^* = E' + i E''$

where E' = Storage Modulus E" = Loss Modulus

For every loading frequency select E' and E"

COMPARISON OF MODELS

Condition	Current Practice	Proposed Practice	Future Practice
HMA	L-E	L-V-E	N-L-V-E
Base/SG	L-E	L-E	N-L-E
Loads	Static	Moving	Static
Pressure	Uniform	Any Dist.	Any Dist.?
Application	Simple	Moderate	Complicated

- Is it a Comprehensive Model: No
- Public Domain
- Time Efficient
- Short Term Delivery: 2-3 years

- Applicable to a Wide Range of Cases
- Improvements:
 - dynamic loads
 - dynamic behavior of pavement
 - non-uniform stress distributions
 - two-dimensional stress distributions
 - incorporates pavement roughness

