Oxidative Aging of Asphalt Binders in Hot Mix Asphalt Mixtures

Nathan Morian, Ph.D. Candidate, NDOT Elie Y. Hajj, Ph.D., UNR *(Presenter)* Charles J. Glover, Ph.D., Texas A&M Peter E. Sebaaly, Ph.D., UNR

Transportation Research Board 90th Annual Meeting Characteristics of Asphalt Materials (AFK20) January 24, 2011

Asphalt Research Consortium

- Binders aged outside of mixtures have been frequently studied.
- Will binders aged in HMA mixtures have same engineering properties?

Research Objective

- Quantifying Oxidation of Asphalt Binders Aged in Compacted Mixtures
 - Others have compared aging to binder viscosity or stiffness
 - Lack sufficient aging measurements of the binder
 - lack of previous studies specifically relating mixture properties to adequate aging measurements

- A. Aggregate sources: 2 (NV & CO)
- **B.** Binders, single source: 2 (PG64-22 & PG64-28)
- **C.** Mixture oven-aging levels: 4 (0, 3, 6 and 9 months at 140°F)

Experimental Design

A. Aggregate sources: NV & CO

- **B.** Binders: single base stock and supplier (Paramount Petroleum Corp.)
 - Neat PG64-22
 - SBS Modified PG64-28

Experimental Design

C. Agg. sources and binders combine to 4 different Superpave designed mixtures (6×10^6 ESALS)

Source ID	Source Location	Mineralogy	Agg. Water Abs. (%)	Binder Grade	Binder Content (% TWM)	App. Film Thickness (µm)
Novada	Sparke	Rhyolite,	97	PG64-22	5.4	9
nevaua	Sparks	Silica Sand	2.1	PG64-28	5.2	9
Oslavada Mawisan		Mica Gneiss,	0.0	PG64-22	4.5	11
Colorado	worrison	Quartz Sand	0.9	PG64-28	4.5	11

Experimental Design

- **C.** 4 Mixture oven-aging levels:
 - **0, 3, 6, & 9 months at 140°F**
 - All samples short-term aged loose 4 hrs at 275°F
 - SGC Compacted Specimens
 - **7±0.5%** Air Voids

Experimental Plan

Original CA

Experimental Analysis

- CA vs Aging
- | E* | vs Aging
- | E* | vs CA

Results, Example

Carbonyl Area, CA (measurements are being done by Glover at A&M)

Results, Carbonyl Area

$CA = \beta_0 + \beta_1(Age) + \beta_2(Mix) + \beta_3(Mix)(Age)$ [Eqn 1]

- CA measured Carbonyl Area;
- β_i regression coefficients, i = 0,...,3;
- Age months of oven aging at 140°F;
- Mix categorical variable to differentiate the two mixtures being compared, value of 1 or 0 depending on which agg. and binder combination being considered.

Statistics, CA

$CA = [\beta_0 + \beta_2(Mix)] + [\beta_1 + \beta_3(Mix)] (Age)$ [Eqn 1]

CA vs.	Compa	arison I	Compa	rison II	Compa	rison III	Compa	rison IV
Age	C022	NV22	C028	NV28	C022	C028	NV22	NV28
Mix Variable	0	1	0	1	1	0	1	0

Statistics, CA Example

$CA = [\beta_0 + \beta_2(Mix)] + [\beta_1 + \beta_3(Mix)] (Age)$ [Eqn 1]

Comparison I

- Mix = 0, CO22 \rightarrow CA_{C022} = [β_0] + [β_1] (Age)
- Mix = 1, NV22 \rightarrow CA_{NV22} = [$\beta_0 + \beta_2$] + [$\beta_1 + \beta_3$](Age)

Statistics, CA

$CA = [\beta_0 + \beta_2(Mix)] + [\beta_1 + \beta_3(Mix)] (Age)$ [Eqn 1]

- **1)** CA increased linearly with Age;
- **2)** Generally, CA was higher for PG64-22;
- **3)** Within each binder, the intercepts were stat. the same;
 - a) Aggregate source did not significantly affect short-term oxidation;
- 4) Oxidation rates were different between agg. sources;
 - a) Agg. source, as it influences mix properties affected binder aging

- 5) Within each agg., the intercepts were stat. different;
 - a) Short-term aging of binders were not the same (original CA was the same)
 - b) Polymer modification influences the Non-Linear Fast Rate Oxidation (short-term region)
- 6) Within each agg. source, after Fast Rate Oxidation, the binders aged at the same rate;
 - a) Binders from same base stock (similar oxidation characteristics)
 - **b)** Indicating Mix Characteristics Influence the rate of binder oxidation

Results, |E*|

Nevada Mixes

Results, |E*|

Colorado Mixes

1.E+04 1.E+03 1.E+01 1.E+02 1.E+01 1.E+02 1.E+01 1.E+01 1.E+01 1.E+01 1.E+01 1.E+01 1.E+02 1.E+01 1.E+02 1.E+03 1.E+03 1.E+02 1.E+04 1.E+04

$|\mathbf{E}^*| = \beta_4 + \beta_5(\mathbf{CA}) + \beta_6(\mathbf{Mix}) + \beta_7(\mathbf{Mix})(\mathbf{CA}) \quad [\mathbf{Eqn 2}]$

- [E*] measured Dynamic Modulus, 0.1Hz;
- β_i regression coefficients, j = 4,...,7;
- CA measured Carbonyl Area;
- Mix categorical variable to differentiate the two mixtures being compared, value of 1 or 0 depending on which agg. and binder combination being considered.

Statistics, |E* | vs. CA

$|E^*| = [\beta_4 + \beta_6(Mix)] + [\beta_5 + \beta_7(Mix)] (CA)$ [Eqn 2]

70 and	Comparison I		Comparison II		Compa	rison III	Comparison IV	
100°F	C022	NV22	C028	NV28	C022	C028	NV22	NV28
Mix Variable	0	1	0	1	1	0	1	0

- Analysis conducted for both 70 and $100^{\circ}F$

Statistics, |E* | Example

$|E^*| = [\beta_4 + \beta_6(Mix)] + [\beta_5 + \beta_7(Mix)] (CA)$ [Eqn 2]

<u>Comparison I at 70°F</u>

- Mix = 0, CO22 \rightarrow | E* | _{70-C022} = [β_4] + [β_5 (CA)]
- Mix = 1, NV22 \rightarrow | E* | _{70-NV22} = [β_4 + β_6] + [β_5 + β_7](CA)
- Same model form for both 70° F and 100° F

Statistics, |E*|, 70°F

$|E^*|_{70} = [\beta_4 + \beta_6(Mix)] + [\beta_5 + \beta_7(Mix)](CA)$ [Eqn 2.a]

Mixes compared	β ₆	P-value	Sig.	β 7	P-value	Sig.
C022 NV22	-67.58	0.255	NS	600		
C028 NV28	-36.43	0.530	NS	500		
C022 C028	-73.79	0.173	NS	400 June 2H		
NV22 NV28	-104.94	0.119	NS	* (ksi) at 0.1		
		_		100		
ARC Asphalt Research	Consortium			0		

- 7) Within each binder, the intercepts were stat. the same;
 - a) Agrees with CA vs Age analysis, Item 3.a
- 8) Within each binder, Rates of [E*] increase lower for CO;
 - a) Rate of | E* | increase dependent upon mixture characteristics;
- 9) Within each agg., rate of [E*] increase lower for PG64-28;
 - **a)** Supports that different binders influence the binder aging, particularly polymer modification

Statistics, **| E* |**, **100°F**

$|E^*|_{100} = [\beta_4 + \beta_6(Mix)] + [\beta_5 + \beta_7(Mix)](CA) [Eqn 2.b]$

Mixes Compared	β 6 1	P-value ¹	Sig.	β 7 1	P-value ¹	Sig.	
C022 NV22	-54.21	0.027	SL ¹	200			
C028 NV28	-19.51	0.110	NS	<u> </u>			
C022 C028	-61.35	0.004	SL1	Hz and 100			
NV22 NV28	-96.05	<0.001	SL ¹	[(ksi) at 0.1			- · Reg. CO - · Reg. CO NV22 Reg. NV
1 -	Change i	n result as	s comp)č –			A NV28
ARC Asphalt Research	Consortium			0	- Ma	1	.0 1.5 Carbonyl Area

10) Within each binder, Rates of | E* | increase lower for CO;

a) Rate of | E* | increase dependent upon mixture characteristics;

11) Within each agg., the intercepts of the PG64-22 mixtures were sig. lower than the PG64-28

a) Supports that different binders influence the binder aging, Item 9)

12) Within each agg., the rate of | E* | increase is higher with PG64-22;

a) Supports that different binders influence the binder aging, particularly polymer modification

Conclusions

- Carbonyl indicates:
 - mix properties *did not affect short-term aging in loose condition*, but the binder properties do play a roll
 - mix properties *did affect long-term aging in compacted mixes*, but the binder did age at nearly the same rate with respect to time

Conclusions, cont'd

- Mixture stiffness, | E* |, indicates:
 - mix properties *may affect short-term aging in loose condition* (depending on analysis temperature)
 - mix properties *did affect long-term aging in compacted mixes*

- |E*| vs. CA indicates significantly different aging characteristics between the two binder grades
- Both the binder and the mix characteristics influence the aging of asphalt binders in mixtures.

Further/On-Going Research

- Further consideration of
 - influence of agg. properties on binder aging (Abs.)
 - mix characteristics (AV [total vs. accessible], AFT, P_{b-eff}
 vs. P_{b-total}, etc.)
- Evaluate ext./rec. binder properties (G*, ZSV, SENB, etc.)
- Evaluate low temperature properties of aged mixes:
 - fracture temperature and stress (TSRST)

-This work is part of the overall effort in the Asphalt Research Consortium (ARC) work element E2d. www.arc.unr.edu

-Authors gratefully acknowledge the FHWA support.

