

Characteristics of the Loading Pulse for the Flow Number Performance Test

Elie Y. Hajj, Alvaro Ulloa, Raj Siddharthan, Peter E. Sebaaly

Association of Asphalt Paving Technologists Annual Meeting March 7-10, 2010, Sacramento, California

Introduction

Flow number (FN) test

Flow number (FN) test Permanent deformation Characterization

Objective

Pulse duration prediction

Pavement response histories for a single circular tire.....

Question: What stress pulse shape to use in triaxial test?

Stress State in the Triaxial FN Test

Database of pavement stresses timehistories

3D-Move Model

Semi-trailor Truck

dynamic load transfer \rightarrow vertical loads on tires additive (+ or -) to static load

Braking = f(deceleration "a", braking forces)

Semi-trailor Truck

- Load Distribution During Braking: 14 Unknowns
 - 11 equilibrium equations
 - 3 characteristic equations:
 - Application (treadle output) vs. actuation (brake chamber) pressure/axle
 - Brake force vs. actuation pressure on each axle.
 - Dynamic load transfer coefficient.

Equivalent deviator and confining stresses time-histories

- $\sigma_{\rm d}$ & $\sigma_{\rm c}$ were analyzed under Single and Tandem axles for every:
 - pavement structure
 - mixture type
 - pavement temperature
 - braking and non-braking conditions.

Equivalent deviator and confining stresses time-histories Single vs. Tandem Axles

Equivalent deviator and confining stresses time-histories Single vs. Tandem Axles (Non-braking)

Equivalent deviator and confining stresses time-histories Single vs. Tandem Axles (Braking)

Equivalent deviator and confining stresses time-histories

- Tandem axle generates a more critical stress condition than the steering axle when the 3D state of stresses is analyzed.
- Stresses evaluated under tandem axles at 2-inch below pavement surface.

Equivalent deviator and confining stresses time-histories

Equivalent deviator stress pulse duration

- Loading pulse characterized using $\sigma_{\rm d}$ at 2 inches.
- Best-fitting haversine wave shape.

Equivalent deviator stress pulse duration under tandem axle, 2 inches below pavement surface

PG64-22 Mix Non-braking

Equivalent t_p at 2" below pavement surface Non-braking Conditions (20-60 mph, 104-158°F)

 $\log(t_p) = -0.00353(T) - 0.0236(S) + 0.00015(S)^2 - 0.6654$

ARC Asphalt Research Consortium

Equivalent t_p at 2" below pavement surface Braking Conditions (2-20 mph, 104-158°F)

 $\log(t_p) = -0.000387(T) - 0.05531(S) - 0.23603$

ARC Asphalt Research Consortium

Equivalent Deviator Stress Pulse Duration (t_p) at 2" below pavement surface

	Non-Braking	Braking
Speed	20-60 mph	2-20 mph
Equivalent Deviator stress pulse (t_p)	0.016-0.069 sec	0.041-0.456 sec
	< 0.1 sec typically applied to FN test (<i>except for braking at 2 mph</i>)	

Equivalent deviator stress pulse duration Braking vs. Non-braking at 20 mph

Equivalent Deviator Stress Pulse Duration (t_p) at 2" below pavement surface

Non-braking condition seems to result in a more critical condition than braking condition.

Evaluate the magnitudes of σ_d **and** σ_c **under braking and non-braking conditions**

Maximum equivalent σ_d and σ_c stresses

PG64-22 Mix for non-braking conditions

Maximum equivalent σ_d and σ_c stresses

PG64-22 Mix for braking conditions

Maximum equivalent σ_d and σ_c stresses

• Predictive Equations for:

- Equivalent max deviator stress, σ_d

• Equivalent max confining stress, $\sigma_c = \sigma_3$

at 2 inches below pavement surface Braking and Non-Braking Conditions

Function of AC layer thickness, T, E*, S, interaction terms

Equivalent Deviator & Confining Stresses at 2" Non-Braking Conditions

Computed Max Deviator Stress, psi

Computed Max Confining Stress, psi

Equivalent Deviator & Confining Stresses at 2" Braking Conditions

Computed Max Deviator Stress, psi

Computed Max Confining Stress, psi

Equivalent Deviator & Confining Stresses at 2" Below Pavement Surface

Summary and conclusions

• Equivalent deviator stress pulse duration (t_p) at 2" below the pavement is function of

-vehicle speed, and

- -pavement temperature.
- Neither pavement thickness nor mixture properties significantly impacted t_{ρ} at 2" below pavement surface.

Summary and conclusions

- Standard pulse time loading of 0.1 sec does not simulate actual traffic-induced deviator stress pulse duration.
- Braking conditions, though it generates interface shear stresses, leads to lower deviator pulse duration & higher amplitude.

Summary and conclusions

• Amplitude of the equivalent triaxial deviator and confining stresses are highly affected by:

- Mixture's stiffness

- Pavement effective temperature
- Vehicle speed.

Thank you for your attention!!!

- Acknowledgments
 - This work is part of the overall effort in the Asphalt Research Consortium (ARC) work element E2c:
 "Critically Designed HMA Mixtures."
 (www.arc.unr.edu)

- Authors gratefully acknowledge the FHWA support.

