

University of Nevada Reno Presented by: Elie Y. Hajj, Ph.D.

Manitoba – PTH 8 RAP Field Sections Update on Laboratory Test Results

Recycled Asphalt Pavement Expert Task Group Oklahoma City, Oklahoma – October 26, 2010

- Provincial Highway 8 between Gimli & Hnausa, Manitoba, Canada.
- Total Project length: 17 miles
- Comparative pavement site: ~ 6 miles
- Construction date: Sept. 2009
- RAP: 1/2" NMAS

Heaviest Traffic lane

	About 3 km	About 3 km	About 3 km	1 - 3 km								
2	HMA/50% RAP 4 th lift	HMA/50% RAP 4 th lift with grade change	HMA/15% RAP 4 th lift	HMA/No RAP 4 th lift								
2	"HMA/50% RAP 3 rd lift	HMA/50% RAP 3 rd lift with grade change	HMA/15% RAP 3 rd lift	HMA/No RAP 3 rd lift								
	New HMA/50% RAP 2 nd lift											
	New HMA/50% RAP 1 st lift											

Mixtures Types

Mixture	Binder	Field Mix Lab Compacted	Lab Mix Lab Compacted
0% RAP no grade change	Pen 150-200	F-0%-150	L-0%-150
15% RAP no grade change	Pen 150-200	F-15%-150	L-15%-150
50% RAP no grade change	Pen 150-200	F-50%-150	L-50%-150
50% RAP grade change	Pen 200-300	F-50%-200	L-50%-200

Mixtures Types

Mixture	Mix Design	Lift	Optimum Binder Content	Binder Content by Ignition Oven	RAP Binder %*
F-0%-150	Bit B	4	5.2%	5.0%	
F-15%-150	Bit B	4	5.2%	5.1%	13.8%
F-50%-150	Bit B	4	5.0%	4.8%	49.0%
F-50%-200	Bit B	4	5.0%	4.8%	49.0%
L-0%-150	Bit B	4	5.2%		
L-15%-150	Bit B	4	5.2%		13.6%
L-50%-150	Bit B	4	5.0%		47.0%
L-50%-200	Bit B	4	5.0%		47.0%

* Based on RAP binder content of 4.7% (from Ignition Oven)

Test Experiment Matrix – Binders

- Determine PG grading for:
 - -virgin binders:
 - Pen 150-200, Pen 200-300
 - recovered binders (85% Toluene + 15% Ethanol):
 - F-0%-150, F-15%-150, F-50%-150, F-50%-200
 - L-0%-150, L-15%-150, L-50%-150, L-50%-200
 - **RAP-100%**

Test Experiment Matrix – Binders

- Evaluate the following:
 - Blending chart process
 - RAP mortar procedure (UWM)
 - Predicted binder properties from Hirsh model
 - Predicted binder properties from Huet-Sayegh modified model (2S2P1D model)
 - Predicted binder properties from Lytton et al. model

Test Experiment Matrix – Mixtures

Property	F-0%-150	F-15%-150	F-50%-150	F-50%-200	L-0%-150	L-15%-150	L-50%-150	L-50%-200
Resistance to Moisture Damage - TS vs. F-T cycles: 0, 1 and 3 F-T - TSR at 1 and 3 F-T - E* vs. F-T cycles: 0, 1 and 3 F-T	X X X							
Resistance to Thermal Cracking - TSRST: 0 and 3 F-T	x	х	Х	Х	Х	Х	Х	x
Resistance to Fatigue Cracking	x	х	Х	х	Х	Х	Х	x

Extraction/Recovery Using Centrifuge

Superpave PG Grades

Extraction/Recovery Using Centrifuge

Superpave PG Grades

	Mix	PG Grade
Virgin	PEN150-200	58-28
virgin	PEN200-300	52-34
	F-0%-150	58-28
	F-15%-150	58-28
	F-50%-150	64-16
Extr./ Rec.	F-50%-200	64-22
using	L-0%-150	58-28
centrifuge	L-15%-150	58-28
	L-50%-150	64-22
	L-50%-200	58-22
	RAP binder (AASHTO M320)	76-10

Asphalt Binder Blending Chart

High Critical Temperature

R

Asphalt Binder Blending Chart

Intermediate Critical Temperature

Asphalt Binder Blending Chart

Low Critical Temperature

Low Critical Temperature for Recovered Binder, °C

◆ Field-Produced Mixtures ■ Laboratory-Produced Mixtures

RAP Mortar Procedure (UWM)

Flow Chart of Material Preparation and Testing

RAP Mortar Procedure (UWM)

Typical Results

- Use semi-empirical model proposed by Christensen et al. (2003) to estimate shear dynamic modulus.
- Measured E*laboratory data used.
- Minimize Error between Hirsch model prediction and real data by varying binder stiffness.
- Compare estimated stiffness with measured stiffness.
- Determine binder critical temperature.

Summary of PG Grades

Preliminary Results for Pen 150-200

%			Critic	al T _{High}			Critical T _{Intermediate} Critical T _{Low}			Critical T _{Low}				
RAP	Mix	Rec.	Blend Chart	Hirsh	Mortar Testing	Rec.	Blend Chart	Hirsh	Mortar Testing	Rec.	Blend Chart	Hirsh	Mortar Testing	TSRST
Virgin Binder			59	9.0		14.7 -32.5								
0	F	61.0		IP		15.8		IP		-31.6				-32.8
U	L	58.6		57.5		14.9		16.0		-32.6				-33.0
15	F	62.6	63.6	IP	597	18.5	18.1	IP	16 7	-29.5	-29.1		20.0	-30.8
15	L	59.4	61.3	57.6	58.7	17.8	18.3	18.6	10.7	-30.5	-29.3		-30.9	-30.9
50	F	69.1	68.8	IP	61.0	24.3	23.4	IP	21.0	-21.2	-23.2		20 1	-29.1
50	L	67.3	67.6	62.5	01.0	23.0	23.7	24.0	21.0	-22.3	-23.7		-20.4	-27.2

Summary of PG Grades (cont'd)

Preliminary Results for Pen 200-300

%	Mix	Critical T _{High}					Critical	T _{Intermed}	iate	Critical T _{Low}				
RAP		Rec.	Blend Chart	Hirsh	Mortar Testing	Rec.	Blend Chart	Hirsh	Mortar Testing	Rec.	Blend Chart	Hirsh	Mortar Testing	TSRST
Vir _{ Bind	gin der		54	4.1		12.2								
0*	F	61.0		IP		15.8		IP		-31.6				-32.8
0.	L	58.6		57.5		14.9		16.0		-32.6				-33.0
50	F	65.1	65.3	IP	57.0	22.9	21.6	IP	10.0	-25.1	-24.6		21.4	-32.1
50	L	63.1	63.2	64.1	57.0	21.6	21.8	20.1	18.8	-26.6	-24.5		-31.4	-34.4

*0% RAP manufactured with Pen150-200

Inverse Problem for Low Temp Characterization

A. C. Falchetto, M. O. Marasteanu & H. Di Benedetto

Huet Model (Huet 1963)

E∞

k, δ

h

- characteristic time varying with temperature
 - time

t F

gamma function:

Inverse Problem for Low Temp Characterization

A. C. Falchetto, M. O. Marasteanu & H. Di Benedetto

Calculated S(t)_{binder} from measured S(t)_{mixture}

$S_{\alpha}(t) = S_{\alpha}(t/10^{\alpha})$	E_{α}	_mix
$S_{mix}(l) = S_{binder}(l / 10)$	E_{∞}	binder

 $1 \cap -\alpha$

$$\begin{aligned} \tau_{binder} &= 10^{-1} \tau_{mix} \\ S_{mix}(t) & \text{creep stiffness of mixture,} \\ S_{binder}(t) & \text{creep stiffness of binder,} \\ E_{\infty_mix} & \text{glassy modulus of mixture,} \\ E_{\infty_binder} & \text{glassy modulus of binder,} \\ \alpha & \text{regression parameter which may depend on mix design,} \\ t & \text{time} \end{aligned}$$

• Authors showed very good predictions for the binder stiffness from the mixture stiffness.

Huet-Sayegh Modified

2S2P1D Model (Olard and Di Benedetto, 2003)

Generalization of Huet-Sayegh model

$$\mathbf{E}^*(\mathbf{i}\omega\tau) = \mathbf{E}_0 + \frac{\mathbf{E}_{\infty} - \mathbf{E}_0}{1 + \delta(\mathbf{i}\omega\tau)^{-\mathbf{k}} + (\mathbf{i}\omega\tau)^{-\mathbf{h}} + (\mathbf{i}\omega\beta\tau)^{-1}}$$

i : complex number,

- ω : $2\pi^*$ frequency
- k, h : exponents such as 0<k<h<1,
- $\boldsymbol{\delta}$: dimensionless constant

 E_0 the static modulus when $\omega \rightarrow 0$,

 E_{∞} the glassy modulus when $\omega \to \infty$,

η : Newtonian viscosity, η=($E_{\infty} - E_0$).β.τ ; when ω → 0, then E*(iωτ) ~ E0+ iω.(E∞-E0).β.τ; β is dimensionless.

 $\boldsymbol{\tau}$: characteristic time varying with temperature

• Relationship between the characteristic time of the mixture and the characteristic time of the corresponding binder at the reference temperature:

 $\tau_{mix}(T) = 10^{\alpha}.\tau_{binder}(T)$

 $\alpha \textbf{:} \textbf{Regression coefficient depending on mixture & aging}$

Huet-Sayegh Modified 2S2P1D Model (Olard and Di Benedetto, 2003)

 Relationship between mix and binder complex moduli was proposed

$$E_{\text{binder}}^{*}(i\omega\tau_{\text{binder}}) = E_{0_\text{binder}} + \frac{E_{\infty_\text{binder}} - E_{0_\text{binder}}}{1 + \delta(i\omega\tau_{\text{binder}})^{-k} + (i\omega\tau_{\text{binder}})^{-h} + (i\omega\beta\tau_{\text{binder}})^{-1}}$$
$$E_{\text{mix}}^{*}(i\omega\tau_{\text{mix}}) = E_{0_\text{mix}} + \frac{E_{\infty_\text{mix}} - E_{0_\text{mix}}}{1 + \delta(i\omega\tau_{\text{mix}})^{-k} + (i\omega\tau_{\text{mix}})^{-h} + (i\omega\beta\tau_{\text{mix}})^{-1}}$$

$$\mathbf{E}_{\mathrm{mix}}^{*}(\omega, \mathbf{T}) = \mathbf{E}_{0_{\mathrm{mix}}} + \left[\mathbf{E}_{\mathrm{binder}}^{*}(10^{\alpha}\,\omega, \mathbf{T}) - \mathbf{E}_{0_{\mathrm{binder}}}\right] \frac{\mathbf{E}_{\infty_{\mathrm{mix}}} - \mathbf{E}_{0_{\mathrm{mix}}}}{\mathbf{E}_{\infty_{\mathrm{binder}}} - \mathbf{E}_{0_{\mathrm{binder}}}}$$

Predictions Using Huet-Sayegh Modified *Approach – Forward Calculation*

- Measure complex modulus for the various mixtures & their associated recovered asphalt binders.
- Fit Huet-Sayegh Modified (2S2P1D) model to measured E* data:
 - Determine δ , h, k, β and $\tau_{\textbf{0}}$ for binder and mix
- Examine the relationship between log(τ mix) & log(τ binder)

Predictions Using Huet-Sayegh Modified

Lab-Produced mixtures

ARC Asphalt Research Consortium Note: not the same parameters (δ , k, and h) were used for the mixes and binders

WESTERN REGIONAL SUPERPAVE CENTER

- Promising results if relationship was found to be a unique relationship
- Continuing Effort:
 - Refine the analysis for lab-produced mixtures
 - Conduct the same analysis for field-produced mixtures
 - Conduct the same analysis for other mixtures
 - Evaluate the inverse calculation

Mixtures Testing

- TS and TSR at multiple F-T cycles
- | E* | at multiple F-T cycles
- TSRST at multiple F-T cycles
- Fatigue testing

TS at 77°F and 0, 1 and 3 F-T

TSR at 77°F, 1 and 3 F-T

Resistance to Moisture Damage

E Test Results at 77°F*

■ 0 F-T ■ 1 F-T ■ 3 F-T

Resistance to Moisture Damage

Resistance to Thermal Cracking

TSRST Test Results – Fracture Temperature

References

ARC Asphalt Research Consortium

- T. J. Hirsch, "Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate". Journal of the American Concrete 5 Institute, Vol. 59(3), 1962, pp 427-4522.
- D. Christensen, T. Pellinen, R. F. Bonaquist, "Hirsch model for estimating the modulus of asphalt concrete". Journal of Association of Asphalt 8 Paving Technologists, Vol. 72, 2003, pp 97-121.
- A. Zofka, M. O. Marasteanu, X. Li, T. Clyne, J. McGraw, "Simple method to obtain asphalt binders low temperature properties from asphalt mixtures properties". Journal of the Association of Asphalt Paving Technologists, Vol. 74, 2005, pp255-282.
- F. Olard, H. Di Benedetto, "General "2S2P1D" model and relation between the linear viscoelastic behaviors of bituminous binders and mixes". RMPD, Vol. 4/2 Special Issue, 1 2003, pp185-224.
- H. Di Benedetto, F. Olard, C. Sauzéat, B. Delaporte, "Linear viscoelastic behaviour of bituminous materials: from binders to mixes", RMPD, Vol. 5 – Special Issue, 2004, pp163-202.

References

- B. Delaporte, H. Di Benedetto, P. Chaverot, G. Gauthier, "Linear viscoelastic properties of bituminous materials: from binders to mastics". J. of the AAPT, Vol. 76, 2007, pp 455-494.
- A. C. Falchetto, M. O. Marasteanu, H. Di Benedetto, "Analogical Based Approach to Forward and Inverse Problems for Asphalt Materials Characterization at Low Temperatures". Submitted for possible publication in the AAPT Journal, 2011.
- M. O. Marasteanu, "Relating Low Temperature Mixture and Binder Properties Using Phenomenological and Analogical Models". Asphalt Binder ETG meeting, Madison, Wisconsin, September 2010.

• ...

